No Arabic abstract
This white paper examines the benefit of the upcoming James Webb Space Telescope for studies of the Solar Systems four giant planets: Jupiter, Saturn, Uranus, and Neptune. JWSTs superior sensitivity, combined with high spatial and spectral resolution, will enable near- and mid-infrared imaging and spectroscopy of these objects with unprecedented quality. In this paper we discuss some of the myriad scientific investigations possible with JWST regarding the giant planets. This discussion is preceded by the specifics of JWST instrumentation most relevant to giant planet observations. We conclude with identification of desired pre-launch testing and operational aspects of JWST that would greatly benefit future studies of the giant planets.
The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.
Alpha Centauri A is the closest solar-type star to the Sun and offers an excellent opportunity to detect the thermal emission of a mature planet heated by its host star. The MIRI coronagraph on JWST can search the 1-3 AU (1-2) region around alpha Cen A which is predicted to be stable within the alpha Cen AB system. We demonstrate that with reasonable performance of the telescope and instrument, a 20 hr program combining on-target and reference star observations at 15.5 um could detect thermal emission from planets as small as ~5 RE. Multiple visits every 3-6 months would increase the geometrical completeness, provide astrometric confirmation of detected sources, and push the radius limit down to ~3 RE. An exozodiacal cloud only a few times brighter than our own should also be detectable, although a sufficiently bright cloud might obscure any planet present in the system. While current precision radial velocity (PRV) observations set a limit of 50-100 ME at 1-3 AU for planets orbiting alpha Cen A, there is a broad range of exoplanet radii up to 10 RE consistent with these mass limits. A carefully planned observing sequence along with state-of-the-art post-processing analysis could reject the light from alpha Cen A at the level of ~10^-5 at 1-2 and minimize the influence of alpha Cen B located 7-8 away in the 2022-2023 timeframe. These space-based observations would complement on-going imaging experiments at shorter wavelengths as well as PRV and astrometric experiments to detect planets dynamically. Planetary demographics suggest that the likelihood of directly imaging a planet whose mass and orbit are consistent with present PRV limits is small, ~5%, and possibly lower if the presence of a binary companion further reduces occurrence rates. However, at a distance of just 1.34 pc, alpha Cen A is our closest sibling star and certainly merits close scrutiny.
The coronagraphic instrument currently proposed for the WFIRST-AFTA mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of their host star. While the design of this instrument is still in progress, this early stage of development is a particularly beneficial time to consider the operation of such an instrument. In this paper, we review current or planned operations on the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST) with a focus on which operational aspects will have relevance to the planned WFIRST-AFTA coronagraphic instrument. We identify five key aspects of operations that will require attention: 1) detector health and evolution, 2) wavefront control, 3) observing strategies/post-processing, 4) astrometric precision/target acquisition, and 5) polarimetry. We make suggestions on a path forward for each of these items.
The James Webb Space Telescope (JWST) is a large (6.6m), cold (50K), infrared-optimized space observatory that will be launched early in the next decade. The observatory will have four instruments: a near-infrared camera, a near-infrared multi-object spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 to 5.0 microns, while the mid-infrared instrument will do both imaging and spectroscopy from 5.0 to 29 microns. The JWST science goals are divided into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the early universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.
This article summarizes a workshop held on March, 2014, on the potential of the James Webb Space Telescope (JWST) to revolutionize our knowledge of the physical properties of exoplanets through transit observations. JWSTs unique combination of high sensitivity and broad wavelength coverage will enable the accurate measurement of transits with high signal-to-noise. Most importantly, JWST spectroscopy will investigate planetary atmospheres to determine atomic and molecular compositions, to probe vertical and horizontal structure, and to follow dynamical evolution, i.e. exoplanet weather. JWST will sample a diverse population of planets of varying masses and densities in a wide variety of environments characterized by a range of host star masses and metallicities, orbital semi-major axes and eccentricities. A broad program of exoplanet science could use a substantial fraction of the overall JWST mission.