No Arabic abstract
The data of four recent experiments --- conducted in Delft, Vienna, Boulder, and Munich with the aim of refuting nonquantum hidden-variables alternatives to the quantum-mechanical description --- are evaluated from a Bayesian perspective of what constitutes evidence in statistical data. We find that each of the experiments provides strong, or very strong, evidence in favor of quantum mechanics and against the nonquantum alternatives. This Bayesian analysis supplements the previous non-Bayesian ones, which refuted the alternatives on the basis of small p-values, but could not support quantum mechanics.
Newtonian physics is describes macro-objects sufficiently well, however it does not describe microobjects. A model of Extended Mechanics for Quantum Theory is based on an axiomatic generalization of Newtonian classical laws to arbitrary reference frames postulating the description of body dynamics by differential equations with higher derivatives of coordinates with respect to time but not only of second order ones and follows from Mach principle. In that case the Lagrangian $L(t,q,dot{q},ddot{q},...,dot {q}^{(n)},...)$ depends on higher derivatives of coordinates with respect to time. The kinematic state of a body is considered to be defined if n-th derivative of the body coordinate with respect to time is a constant (i.e. finite). First, kinematic state of a free body is postulated to invariable in an arbitrary reference frame. Second, if the kinematic invariant of the reference frame is the n-th order derivative of coordinate with respect to time, then the body dynamics is describes by a 2n-th order differential equation. For example, in a uniformly accelerated reference frame all free particles have the same acceleration equal to the reference frame invariant, i.e. reference frame acceleration. These bodies are described by third-order differential equation in a uniformly accelerated reference frame.
An hidden variable (hv) theory is a theory that allows globally dispersion free ensembles. We demonstrate that the Phase Space formulation of Quantum Mechanics (QM) is an hv theory with the position q, and momentum p as the hv. Comparing the Phase space and Hilbert space formulations of QM we identify the assumption that led von Neumann to the Hilbert space formulation of QM which, in turn, precludes global dispersion free ensembles within the theory. The assumption, dubbed I, is: If a physical quantity $mathbf{A}$ has an operator $hat{A}$ then $f(mathbf{A})$ has the operator $f(hat{A})$. This assumption does not hold within the Phase Space formulation of QM. The hv interpretation of the Phase space formulation provides novel insight into the interrelation between dispersion and non commutativity of position and momentum (operators) within the Hilbert space formulation of QM and mitigates the criticism against von Neumanns no hidden variable theorem by, virtually, the consensus.
We present a theoretical model which allows to keep track of all photons in an interferometer. The model is implemented in a numerical scheme, and we simulate photon interference measurements on one, two, four, and eight slits. Measurements are simulated for the high intensity regime, where we show that our simulations describe all experimental results so far. With a slightly modified concept we can also model interference experiments in the low intensity regime, these experiments have recently been performed with single molecules. Finally, we predict the result of polarization measurements, which allow to check the model experimentally.
We simulate correlation measurements of entangled photons numerically. The model employed is strictly local. In our model correlations arise from a phase, connecting the electromagnetic fields of the two photons at their separate points of measurement. We sum up coincidences for each pair individually and model the operation of a polarizer beam splitter numerically. The results thus obtained differ substantially from the classical results. In addition, we analyze the effects of decoherence and non-ideal beam splitters. It is shown that under realistic experimental conditions the Bell inequalities are violated by more than 30 standard deviations.
This Masters thesis has two central subjects: the simulation of correlations generated by local measurements on entangled quantum states by local hidden-variables models and the revelation of hidden nonlocality. We present and detail the Werners local model and the hidden nonlocality of some Werner states of dimension $dgeq5$, the Gisin-Degorres local model for a Werner state of dimension $d=2$ and the local model of Hirsch et al. for mixtures of the singlet state and noise, all of them for projective measurements. Finally, we introduce the local model for POVMs of Hirsch et al. for a state constructed upon the singlet with noise, that still violates the CHSH inequality after local filters are applied, hence presenting the so-called genuine hidden nonlocality.