Do you want to publish a course? Click here

Spectroscopy and level detuning of few-electron spin states in parallel InAs quantum dots

91   0   0.0 ( 0 )
 Added by Claes Thelander
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use tunneling spectroscopy to study the evolution of few-electron spin states in parallel InAs nanowire double quantum dots (QDs) as a function of level detuning and applied magnetic field. Compared to the much more studied serial configuration, parallel coupling of the QDs to source and drain greatly expands the probing range of excited state transport. Owing to a strong confinement, we can here isolate transport involving only the very first interacting single QD orbital pair. For the (2,0)-(1,1) charge transition, with relevance for spin-based qubits, we investigate the excited (1,1) triplet, and hybridization of the (2,0) and (1,1) singlets. An applied magnetic field splits the (1,1) triplet, and due to spin-orbit induced mixing with the (2,0) singlet, we clearly resolve transport through all triplet states near the avoided singlet-triplet crossings. Transport calculations, based on a simple model with one orbital on each QD, fully replicate the experimental data. Finally, we observe an expected mirrored symmetry between the 1-2 and 2-3 electron transitions resulting from the two-fold spin degeneracy of the orbitals.



rate research

Read More

We study spin transport in the one- and two-electron regimes of parallel-coupled double quantum dots (DQDs). The DQDs are formed in InAs nanowires by a combination of crystal-phase engineering and electrostatic gating, with an interdot tunnel coupling ($t$) tunable by one order of magnitude. Large single-particle energy separations (up to 10 meV) and $|g^*|$ factors ($sim$10) enable detailed studies of the $B$-field-induced transition from a singlet-to-triplet ground state as a function of $t$. In particular, we investigate how the magnitude of the spin-orbit-induced singlet-triplet anticrossing depends on $t$. For cases of strong coupling, we find values of 230 $mu$eV for the anticrossing using excited-state spectroscopy. Experimental results are reproduced by calculations based on rate equations and a DQD model including a single orbital in each dot.
Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using three gates, we can form either single quantum dots, or two quantum dots in series along the nanowire. Measurements of the stability diagrams for both cases show that this method is suitable for producing high quality quantum dots in InAs.
Most proof-of-principle experiments for spin qubits have been performed using GaAs-based quantum dots because of the excellent control they offer over tunneling barriers and the orbital and spin degrees of freedom. Here, we present the first realization of high-quality single and double quantum dots hosted in an InAs two-dimensional electron gas (2DEG), demonstrating accurate control down to the few-electron regime, where we observe a clear Kondo effect and singlet-triplet spin blockade. We measure an electronic $g$-factor of $16$ and a typical magnitude of the random hyperfine fields on the dots of $sim 0.6, mathrm{mT}$. We estimate the spin-orbit length in the system to be $sim 5-10, mu mathrm{m}$, which is almost two orders of magnitude longer than typically measured in InAs nanostructures, achieved by a very symmetric design of the quantum well. These favorable properties put the InAs 2DEG on the map as a compelling host for studying fundamental aspects of spin qubits. Furthermore, having weak spin-orbit coupling in a material with a large Rashba coefficient potentially opens up avenues for engineering structures with spin-orbit coupling that can be controlled locally in space and/or time.
Silicon quantum dot qubits must contend with low-lying valley excited states which are sensitive functions of the quantum well heterostructure and disorder; quantifying and maximizing the energies of these states are critical to improving device performance. We describe a spectroscopic method for probing excited states in isolated Si/SiGe double quantum dots using standard baseband pulsing techniques, easing the extraction of energy spectra in multiple-dot devices. We use this method to measure dozens of valley excited state energies spanning multiple wafers, quantum dots, and orbital states, crucial for evaluating the dependence of valley splitting on quantum well width and other epitaxial conditions. Our results suggest that narrower wells can be beneficial for improving valley splittings, but this effect can be confounded by variations in growth and fabrication conditions. These results underscore the importance of valley splitting measurements for guiding the development of Si qubits.
We quantify the contributions of hyperfine and spin-orbit mediated singlet-triplet mixing in weakly coupled InAs quantum dots by electron transport spectroscopy in the Pauli spin blockade regime. In contrast to double dots in GaAs, the spin-orbit coupling is found to be more than two orders of magnitudes larger than the hyperfine mixing energy. It is already effective at magnetic fields of a few mT, where deviations from hyperfine mixing are observed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا