Do you want to publish a course? Click here

3D shape of Orion A from Gaia DR2

148   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the $mathit{Gaia}$ DR2 distances of about 700 mid-infrared selected young stellar objects in the benchmark giant molecular cloud Orion A to infer its 3D shape and orientation. We find that Orion A is not the fairly straight filamentary cloud that we see in (2D) projection, but instead a cometary-like cloud oriented toward the Galactic plane, with two distinct components: a denser and enhanced star-forming (bent) Head, and a lower density and star-formation quieter $sim$75 pc long Tail. The true extent of Orion A is not the projected $sim$40 pc but $sim$90 pc, making it by far the largest molecular cloud in the local neighborhood. Its aspect ratio ($sim$30:1) and high column-density fraction ($sim45%$) make it similar to large-scale Milky Way filaments (bones), despite its distance to the galactic mid-plane being an order of magnitude larger than typically found for these structures.



rate research

Read More

Gaia Data Release 2 includes observational data for 14,099 pre-selected asteroids. From the sparsely sampled G band photometry, we derive lower-limit lightcurve amplitudes for 11,665 main belt asteroids in order to provide constraints on the distribution of shapes in the asteroid main belt. Assuming a triaxial shape model for each asteroid, defined through the axial aspect ratios a > b and b=c, we find an average b/a=0.80+-0.04 for the ensemble, which is in agreement with previous results. By combining the Gaia data with asteroid properties from the literature, we investigate possible correlations of the aspect ratio with size, semi-major axis, geometric albedo, and intrinsic color. Based on our model simulations, we find that main belt asteroids greater than 50 km in diameter on average have higher b/a aspect ratios (are rounder) than smaller asteroids. We furthermore find significant differences in the shape distribution of main belt asteroids as a function of the other properties that do not affect the average aspect ratios. We conclude that a more detailed investigation of shape distribution correlations requires a larger data sample than is provided in Gaia Data Release 2.
The unprecedented astrometry from Gaia DR2 provides us with an opportunity to study in detail molecular clouds in the solar neighbourhood. Extracting the wealth of information in these data remains a challenge, however. We have further improved our Gaussian Processes-based, three-dimensional dust mapping technique to allow us to study molecular clouds in more detail. These improvements include a significantly better scaling of the computational cost with the number of stars, and taking into account distance uncertainties to individual stars. Using Gaia DR2 astrometry together with 2MASS and WISE photometry for 30 000 stars, we infer the distribution of dust out to 600 pc in the direction of the Orion A molecular cloud. We identify a bubble-like structure in front of Orion A, centred at a distance of about 350 pc from the Sun. The main Orion A structure is visible at slightly larger distances, and we clearly see a tail extending over 100 pc that is curved and slightly inclined to the line-of-sight. The location of our foreground structure coincides with 5-10 Myr old stellar populations, suggesting a star formation episode that predates that of the Orion Nebula Cluster itself. We identify also the main structure of the Orion B molecular cloud, and in addition discover a background component to this at a distance of about 460 pc from the Sun. Finally, we associate our dust components at different distances with the plane-of-the-sky magnetic field orientation as mapped by Planck. This provides valuable information for modelling the magnetic field in 3D around star forming regions.
Gaias Early Third Data Release (EDR3) does not contain new radial velocities because these will be published in Gaias full third data release (DR3), expected in the first half of 2022. To maximise the usefulness of EDR3, Gaias second data release (DR2) sources (with radial velocities) are matched to EDR3 sources to allow their DR2 radial velocities to also be included in EDR3. This presents two considerations: (i) arXiv:1901.10460 (hereafter B19) published a list of 70,365 sources with potentially contaminated DR2 radial velocities; and (ii) EDR3 is based on a new astrometric solution and a new source list, which means sources in DR2 may not be in EDR3. EDR3 contains 7,209,831 sources with a DR2 radial velocity, which is 99.8% of sources with a radial velocity in DR2. 14,800 radial velocities from DR2 are not propagated to any EDR3 sources because (i) 3871 from the B19 list are found to either not have an unpublished, preliminary DR3 radial velocity or it differs significantly from its DR2 value, and 5 high-velocity stars not in the B19 list are confirmed to have contaminated radial velocities; and (ii) 10,924 DR2 sources could not be satisfactorily matched to any EDR3 sources, so their DR2 radial velocities are also missing from EDR3. The reliability of radial velocities in EDR3 has improved compared to DR2 because the update removes a small fraction of erroneous radial velocities (0.05% of DR2 radial velocities and 5.5% of the B19 list). Lessons learnt from EDR3 (e.g. bright star contamination) will improve the radial velocities in future Gaia data releases. The main reason for radial velocities from DR2 not propagating to EDR3 is not related to DR2 radial velocity quality. It is because the DR2 astrometry is based on one component of close binary pairs, while EDR3 astrometry is based on the other component, which prevents these sources from being unambiguously matched. (Abridged)
We here apply a novel technique selecting quasar candidates purely as sources with zero proper motions in the Gaia data release 2 (DR2). We demonstrate that this approach is highly efficient toward high Galactic latitudes with < 25% contamination from stellar sources. Such a selection technique offers a very pure sample completeness, since all cosmological point sources are selected regardless of their intrinsic spectral properties within the limiting magnitude of Gaia. We carry out a pilot-study by defining a sample compiled by including all Gaia-DR2 sources within one degree of the North Galactic Pole (NGP) selected to have proper motions consistent with zero within 2-sigma uncertainty. By cross-matching the sample to the optical Sloan Digital Sky Survey (SDSS) and the mid-infrared AllWISE photometric catalogues we investigate the colours of each of our sources. Together with already spectroscopically confirmed quasars we are therefore able to determine the efficiency of our selection. The majority of the zero proper motion sources have optical to mid-infrared colours consistent with known quasars. The remaining population may be contaminating stellar sources, but some may also be quasars with colours similar to stars. Spectroscopic follow-up of the zero proper motion sources is needed to unveil such a hitherto hidden quasar population. This approach has the potential to allow substantial progress on many important questions concerning quasars such as determining the fraction of dust-obscured quasars, the fraction of broad absorption line (BAL) quasars, and the metallicity distribution of damped Lyman-$alpha$ absorbers. The technique could also potentially reveal new types of quasars or even new classes of cosmological point sources.
We use Gaia DR2 astrometric and line-of-sight velocity information combined with two sets of distances obtained with a Bayesian inference method to study the 3D velocity distribution in the Milky Way disc. We search for variations in all Galactocentric cylindrical velocity components ($V_{phi}$, $V_R$ and $V_z$) with Galactic radius, azimuth, and distance from the disc mid-plane. We confirm recent work showing that bulk vertical motions in the $Rtext{-}z$ plane are consistent with a combination of breathing and bending modes. In the $xtext{-}y$ plane, we show that, although the amplitudes change, the structure produced by these modes is mostly invariant as a function of distance from the plane. Comparing to two different Galactic disc models, we demonstrate that the observed patterns can drastically change in short time intervals, showing the complexity of understanding the origin of vertical perturbations. A strong radial $V_R$ gradient was identified in the inner disc, transitioning smoothly from $16$ km s$^{-1}$ kpc$^{-1}$ at an azimuth of $30^circ<phi<45^circ$ ahead of the Sun-Galactic centre line, to $-16$ km s$^{-1}$ kpc$^{-1}$ at an azimuth of $-45^circ<phi<-30^circ$ lagging the solar azimuth. We use a simulation with no significant recent mergers to show that exactly the opposite trend is expected from a barred potential, but overestimated distances can flip this trend to match the data. Alternatively, using an $N$-body simulation of the Sagittarius dwarf-Milky Way interaction, we demonstrate that a major recent perturbation is necessary to reproduce the observations. Such an impact may have strongly perturbed the existing bar or even triggered its formation in the last $1text{-}2$ Gyr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا