We analyze time evolution of charge and spin states in a quantum dot coupled to an electric reservoir. Utilizing high-speed single-electron detection, we focus on dynamics induced by the first-order tunneling. We find that there is a difference between the spin and the charge relaxation: the former appears slower than the latter. The difference depends on the Fermi occupation factor and the spin relaxation becomes slower when the energy level of the quantum dot is lowered. We explain this behavior by a theory which includes the first-order tunneling processes. We conduct detailed comparison of the experiment and the theory with changing the energy of the quantum dot levels, and the theory can reproduce the experimental results.
Semiconductor quantum dots (QDs) offer a platform to explore the physics of quantum electronics including spins. Electron spins in QDs are considered good candidates for quantum bits in quantum information processing, and spin control and readout have been established down to a single electron level. We use these techniques to explore spin dynamics in a hybrid system, namely a QD coupled to a two dimensional electronic reservoir. The proximity of the lead results in relaxation dynamics of both charge and spin, the mechanism of which is revealed by comparing the charge and spin signal. For example, higher order charge tunneling events can be monitored by observing the spin. We expect these results to stimulate further exploration of spin dynamics in QD-lead hybrid systems and expand the possibilities for controlled spin manipulations.
The dynamics of charge qubit in a double quantum dot coupled to phonons is investigated theoretically in terms of a perturbation treatment based on a unitary transformation. The dynamical tunneling current is obtained explicitly. The result is compared with the standard perturbation theory at Born-Markov approximation. The decoherence induced by acoustic phonons is analyzed at length. It is shown that the contribution from deformation potential coupling is comparable to that from piezoelectric coupling in small dot size and large tunneling rate case. A possible decoupling mechanism is predicted.
We derive a general scattering-matrix formula for the pumped current through a mesoscopic region attached to a normal and a superconducting lead. As applications of this result we calculate the current pumped through (i) a pump in a wire, (ii) a quantum dot in the Coulomb blockade regime, and (iii) a ballistic double-barrier junction, all coupled to a superconducting lead. Andreev reflection is shown to enhance the pumped current by up to a factor of 4 in case of equal coupling to the leads. We find that this enhancement can still be further increased for slightly asymmetric coupling.
We demonstrate a method of tuning a semiconductor quantum dot (QD) onto resonance with a cavity mode all-optically. We use a system comprised of two evanescently coupled cavities containing a single QD. One resonance of the coupled cavity system is used to generate a cavity enhanced optical Stark shift, enabling the QD to be resonantly tuned to the other cavity mode. A twenty-seven fold increase in photon emission from the QD is measured when the off-resonant QD is Stark shifted into the cavity mode resonance, which is attributed to radiative enhancement of the QD. A maximum tuning of 0.06 nm is achieved for the QD at an incident power of 88 {mu}W.
The interplay of optical driving and hyperfine interaction between an electron confined in a quantum dot and its surrounding nuclear spin environment produces a range of interesting physics such as mode-locking. In this work, we go beyond the ubiquitous spin 1/2 approximation for nuclear spins and present a comprehensive theoretical framework for an optically driven electron spin in a self-assembled quantum dot coupled to a nuclear spin bath of arbitrary spin. Using a dynamical mean-field approach, we compute the nuclear spin polarization distribution with and without the quadrupolar coupling. We find that while hyperfine interactions drive dynamic nuclear polarization and mode-locking, quadrupolar couplings counteract these effects. The tension between these mechanisms is imprinted on the steady-state electron spin evolution, providing a way to measure the importance of quadrupolar interactions in a quantum dot. Our results show that higher-spin effects such as quadrupolar interactions can have a significant impact on the generation of dynamic nuclear polarization and how it influences the electron spin evolution.
Tomohiro Otsuka
,Takashi Nakajima
,Matthieu R. Delbecq
.
(2018)
.
"Difference in charge and spin dynamics in a quantum dot-lead coupled system"
.
Tomohiro Otsuka
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا