Do you want to publish a course? Click here

The hunt for self-similar core collapse

100   0   0.0 ( 0 )
 Added by V\\'aclav Pavl\\'ik
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Core collapse is a prominent evolutionary stage of self-gravitating systems. In an idealised collisionless approximation, the region around the cluster core evolves in a self-similar way prior to the core collapse. Thus, its radial density profile outside the core can be described by a power law, $rho propto r^{-alpha}$. We aim to find the characteristics of core collapse in $N$-body models. In such systems, a complete collapse is prevented by transferring the binding energy of the cluster to binary stars. The contraction is, therefore, more difficult to identify. We developed a method that identifies the core collapse in $N$-body models of star clusters based on the assumption of their homologous evolution. We analysed different models (equal- and multi-mass), most of which exhibit patterns of homologous evolution, yet with significantly different values of $alpha$: the equal-mass models have $alpha approx 2.3$, which agrees with theoretical expectations, the multi-mass models have $alpha approx 1.5$ (yet with larger uncertainty). Furthermore, most models usually show sequences of separated homologous collapses with similar properties. Finally, we investigated a correlation between the time of core collapse and the time of formation of the first hard binary star. The binding energy of such a binary usually depends on the depth of the collapse in which it forms, for example from $100,kT$ to $10^4,kT$ in the smallest equal-mass to the largest multi-mass model, respectively. However, not all major hardenings of binaries happened during the core collapse. In the multi-mass models, we see large transfers of binding energy of $sim 10^4,kT$ to binaries that occur on the crossing timescale and outside of the periods of the homologous collapses.



rate research

Read More

We deduce and discuss the implications of self-similarity for the stability in terms of robustness to failure of multiplexes, depending on interlayer degree correlations. First, we define self-similarity of multiplexes and we illustrate the concept in practice using the configuration model ensemble. Circumscribing robustness to survival of the mutually percolated state, we find a new explanation based on self-similarity both for the observed fragility of interconnected systems of networks and for their robustness to failure when interlayer degree correlations are present. Extending the self-similarity arguments, we show that interlayer degree correlations can change completely the stability properties of self-similar multiplexes, so that they can even recover a zero percolation threshold and a continuous transition in the thermodynamic limit, qualitatively exhibiting thus the ordinary stability attributes of noninteracting networks. We confirm these results with numerical simulations.
325 - Yan Guo , Mahir Hadzic , Juhi Jang 2021
In the supercritical range of the polytropic indices $gammain(1,frac43)$ we show the existence of smooth radially symmetric self-similar solutions to the gravitational Euler-Poisson system. These solutions exhibit gravitational collapse in the sense that the density blows-up in finite time. Some of these solutions were numerically found by Yahil in 1983 and they can be thought of as polytropic analogues of the Larson-Penston collapsing solutions in the isothermal case $gamma=1$. They each contain a sonic point, which leads to numerous mathematical difficulties in the existence proof.
A self-similar solution for time evolution of isothermal, self-gravitating viscous disks is found under the condition that $alpha equiv alpha (H/r)$ is constant in space (where $alpha$ is the viscosity parameter and $H/r$ is the ratio of a half-thickness to radius of the disk). This solution describes a homologous collapse of a disk via self-gravity and viscosity. The disk structure and evolution is distinct in the inner and outer parts. There is a constant mass inflow in the outer portions so that the disk has flat rotation velocity, constant accretion velocity, and surface density decreasing outward as $Sigma propto r^{-1}$. In the inner portions, in contrast, mass is accumulated near the center owing to the boundary condition of no radial velocity at the origin, thereby a strong central concentration being produced; surface density varies as $Sigma propto r^{-5/3}$. Moreover, the transition radius separating the inner and outer portions increases linearly with time. The consequence of such a high condensation is briefly discussed in the context of formation of a quasar black hole.
We use a semianalytic approach that is calibrated to N-body simulations to study the evolution of self-interacting dark matter cores in galaxies. We demarcate the regime where the temporal evolution of the core density follows a well-defined track set by the initial halo parameters and the cross section. Along this track, the central density reaches a minimum value set by the initial halo density. Further evolution leads to an outward heat transfer, inducing gravothermal core collapse such that the core shrinks as its density increases. We show that the time scale for the core collapse is highly sensitive to the outer radial density profile. Satellite galaxies with significant mass loss due to tidal stripping should have larger central densities and significantly faster core collapse compared to isolated halos. Such a scenario could explain the dense and compact cores of dwarf galaxies in the Local Group like Tucana (isolated from the Milky Way), the classical Milky Way satellite Draco, and some of the ultrafaint satellites. If the ultimate fate of core collapse is black hole formation, then the accelerated time scale provides a new mechanism for creating intermediate mass black holes.
It has been proposed that gravothermal collapse due to dark matter self-interactions (i.e. self-interacting dark matter, SIDM) can explain the observed diversity of the Milky Way (MW) satellites central dynamical masses. We investigate the process behind this hypothesis using an $N$-body simulation of a MW-analogue halo with velocity dependent self-interacting dark matter (vdSIDM) in which the low velocity self-scattering cross-section, $sigma_{T}/m_{x}$, reaches 100 cm$^{2}$g$^{-1}$; we dub this model the vd100 model. We compare the results of this simulation to simulations of the same halo that employ different dark models, including cold dark matter (CDM) and other, less extreme SIDM models. The masses of the vd100 haloes are very similar to their CDM counterparts, but the values of their maximum circular velocities, $V_{max}$, are significantly higher. We determine that these high $V_{max}$ subhaloes were objects in the mass range [$5times10^{6}$, $1times10^{8}$] $M_odot$ at $z=1$ that undergo gravothermal core collapse. These collapsed haloes have density profiles that are described by single power laws down to the resolution limit of the simulation, and the inner slope of this density profile is approximately $-3$. Resolving the ever decreasing collapsed region is challenging, and tailored simulations will be required to model the runaway instability accurately at scales $<1$ kpc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا