Do you want to publish a course? Click here

Gravitational Collapse for Polytropic Gaseous Stars: Self-similar Solutions

326   0   0.0 ( 0 )
 Added by Matthew Schrecker
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the supercritical range of the polytropic indices $gammain(1,frac43)$ we show the existence of smooth radially symmetric self-similar solutions to the gravitational Euler-Poisson system. These solutions exhibit gravitational collapse in the sense that the density blows-up in finite time. Some of these solutions were numerically found by Yahil in 1983 and they can be thought of as polytropic analogues of the Larson-Penston collapsing solutions in the isothermal case $gamma=1$. They each contain a sonic point, which leads to numerous mathematical difficulties in the existence proof.

rate research

Read More

The classical model of an isolated selfrgavitating gaseous star is given by the Euler-Poisson system with a polytropic pressure law $P(rho)=rho^gamma$, $gamma>1$. For any $1<gamma<frac43$, we construct an infinite-dimensional family of collapsing solutions to the Euler-Poisson system whose density is in general space inhomogeneous and undergoes gravitational blowup along a prescribed space-time surface, with continuous mass absorption at the origin. The leading order singular behavior is described by an explicit collapsing solution of the pressureless Euler-Poisson system.
56 - Yu-Qing Lou 2006
We explore semi-complete self-similar solutions for the polytropic gas dynamics involving self-gravity under spherical symmetry, examine behaviours of the sonic critical curve, and present new asymptotic collapse solutions that describe `quasi-static asymptotic behaviours at small radii and large times. These new `quasi-static solutions with divergent mass density approaching the core can have self-similar oscillations. Earlier known solutions are summarized. Various semi-complete self-similar solutions involving such novel asymptotic solutions are constructed, either with or without a shock. In contexts of stellar core collapse and supernova explosion, a hydrodynamic model of a rebound shock initiated around the stellar degenerate core of a massive progenitor star is presented. With this dynamic model framework, we attempt to relate progenitor stars and the corresponding remnant compact stars: neutron stars, black holes, and white dwarfs.
216 - Anxo Biasi 2021
This paper addresses the construction and the stability of self-similar solutions to the isentropic compressible Euler equations. These solutions model a gas that implodes isotropically, ending in a singularity formation in finite time. The existence of smooth solutions that vanish at infinity and do not have vacuum regions was recently proved and, in this paper, we provide the first construction of such smooth profiles, the first characterization of their spectrum of radial perturbations as well as some endpoints of unstable directions. Numerical simulations of the Euler equations provide evidence that one of these endpoints is a shock formation that happens before the singularity at the origin, showing that the implosion process is unstable.
We show the existence of self-similar solutions for the Muskat equation. These solutions are parameterized by $0<s ll 1$; they are exact corners of slope $s$ at $t=0$ and become smooth in $x$ for $t>0$.
We consider the nonlinear heat equation $u_t = Delta u + |u|^alpha u$ with $alpha >0$, either on ${mathbb R}^N $, $Nge 1$, or on a bounded domain with Dirichlet boundary conditions. We prove that in the Sobolev subcritical case $(N-2) alpha <4$, for every $mu in {mathbb R}$, if the initial value $u_0$ satisfies $u_0 (x) = mu |x-x_0|^{-frac {2} {alpha }}$ in a neighborhood of some $x_0in Omega $ and is bounded outside that neighborhood, then there exist infinitely many solutions of the heat equation with the initial condition $u(0)= u_0$. The proof uses a fixed-point argument to construct perturbations of self-similar solutions with initial value $mu |x-x_0|^{-frac {2} {alpha }}$ on ${mathbb R}^N $. Moreover, if $mu ge mu _0$ for a certain $ mu _0( N, alpha )ge 0$, and $u_0 Ige 0$, then there is no nonnegative local solution of the heat equation with the initial condition $u(0)= u_0$, but there are infinitely many sign-changing solutions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا