Do you want to publish a course? Click here

Quantifying jet modifications with substructure

81   0   0.0 ( 0 )
 Added by Konrad Tywoniuk
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The striking suppression and modification patterns that are observed in jet observables measured in heavy-ion collisions with respect to the proton-proton baseline have the potential to constrain the spatio-temporal branching process of energetic partons in a dense QCD medium. The mechanism of jet energy loss is intricately associated with medium resolution of jet substructure fluctuations. This naturally affects the behavior of the suppression of jets at high-pT, inducing an explicit dependence on jet scales. In this contribution, we review recent work on using the insight from multi-parton quenching to calculate leading-logarithmic corrections to the single-inclusive jet spectrum, and discuss its impact on a wide range of observables, including jet substructure.



rate research

Read More

73 - Markus Fasel 2019
We discuss the latest results from jet fragmentation and jet substructure measurements performed with the ALICE experiment in proton-proton and heavy-ion collisions in a wide range of jet transverse momentum. The jet production cross sections and cross section ratios for different jet resolution parameters will be shown in a wide range of $p_{textrm{T}}$. Results will be compared to next-to-leading order pQCD calculations.
We present a coherent model that combines jet production from perturbative QCD with strongly-coupled jet-medium interactions described in holography. We use this model to study the modification of an ensemble of jets upon propagation through a quark-gluon plasma resembling central heavy ion collisions. Here the modification of the dijet asymmetry depends strongly on the subleading jet width, which can therefore be an important observable for studying jet-medium interactions. We furthermore show that the modification of the shape of the leading jet is relatively insensitive to the dijet asymmetry, whereas the subleading jet shape modification is much larger for more imbalanced dijets. Finally, we compare the results of our holographic model to a recent CMS measurement.
A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the $D_2$ observable and perform an illustrative case study using a search for a light hadronically decaying $Z$. We find that the CSS approach completely decorrelates the $D_2$ observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.
153 - Varun Vaidya 2020
I develop an Effective Field Theory (EFT) framework to compute jet substructure observables for heavy ion collision experiments. As an illustration, I consider dijet events that accompany the formation of a weakly coupled Quark Gluon Plasma(QGP) medium in a heavy ion collision and look at an observable insensitive to jet selection bias: the simultaneous measurement of jet mass along with the transverse momentum imbalance between the jets that are groomed to remove soft radiation. Treating the jet as an open quantum system, I write down a factorization formula within the SCET(Soft Collinear Effective Theory) framework in the forward scattering regime. The physics of the medium is encoded in a universal soft field correlator while the jet-medium interaction is captured by a medium induced jet function. The factorization formula leads to a Lindblad type equation for the evolution of the reduced density matrix of the jet in the Markovian approximation. The solution for this equation allows a resummation of large logarithms that arise due to the final state measurements imposed while simultaneously summing over multiple incoherent interactions of the jet with the medium.
108 - Eleanor Hall , Jesse Thaler 2018
We introduce soft drop isolation, a new photon isolation criterion inspired by jet substructure techniques. Soft drop isolation is collinear safe and is equivalent to Frixione isolation at leading non-trivial order in the small R limit. However, soft drop isolation has the interesting feature of being democratic, meaning that photons can be treated equivalently to hadrons for initial jet clustering. Taking advantage of this democratic property, we define an isolated photon subjet: a photon that is not isolated from its parent jet but is isolated within its parent subjet after soft drop declustering. The kinematics of this isolated photon subjet can be used to expose the QED splitting function, in which a quark radiates a photon, and we verify this behavior using both a parton shower generator and a perturbative calculation in the collinear limit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا