No Arabic abstract
Integrated single-photon detectors open new possibilities for monitoring inside quantum photonic circuits. We present a concept for the in-line measurement of spatially-encoded multi-photon quantum states, while keeping the transmitted ones undisturbed. We theoretically establish that by recording photon correlations from optimally positioned detectors on top of coupled waveguides with detuned propagation constants, one can perform robust reconstruction of the density matrix describing the amplitude, phase, coherence and quantum entanglement. We report proof-of-principle experiments using classical light, which emulates single-photon regime. Our method opens a pathway towards practical and fast in-line quantum measurements for diverse applications in quantum photonics.
Quantum entanglement is one of the most important resources in quantum information. In recent years, the research of quantum entanglement mainly focused on the increase in the number of entangled qubits or the high-dimensional entanglement of two particles. Compared with qubit states, multipartite high-dimensional entangled states have beneficial properties and are powerful for constructing quantum networks. However, there are few studies on multipartite high-dimensional quantum entanglement due to the difficulty of creating such states. In this paper, we experimentally prepared a multipartite high-dimensional state $|Psi_{442}rangle=frac{1}{2}(|000rangle+|110rangle+|221rangle+|331rangle)$ by using the path mode of photons. We obtain the fidelity $F=0.854pm0.007$ of the quantum state, which proves a real multipartite high-dimensional entangled state. Finally, we use this quantum state to demonstrate a layered quantum network in principle. Our work highlights another route towards complex quantum networks.
We present a study of optical quantum states generated by subtraction of photons from the thermal state. Some aspects of their photon number and quadrature distributions are discussed and checked experimentally. We demonstrate an original method of up to ten photon subtracted state preparation with use of just one single-photon detector. All the states where measured with use of balanced homodyne technique, and the corresponding density matrices where reconstructed. The fidelity between desired and reconstructed states exceeds 99%
Metasurfaces based on resonant nanophotonic structures have enabled novel types of flat-optics devices often outperforming the capabilities of bulk components, yet these advances remain largely unexplored for quantum applications. We show that non-classical multi-photon interferences can be achieved at the subwavelength scale in all-dielectric metasurfaces. We simultaneously image multiple projections of quantum states with a single metasurface, enabling a robust reconstruction of amplitude, phase, coherence, and entanglement of multi-photon polarization-encoded states. One- and two-photon states are reconstructed through nonlocal photon correlation measurements with polarization-insensitive click-detectors positioned after the metasurface, and the scalability to higher photon numbers is established theoretically. Our work illustrates the feasibility of ultra-thin quantum metadevices for the manipulation and measurement of multi-photon quantum states with applications in free-space quantum imaging and communications.
Standard quantum state reconstruction techniques indicate that a detection efficiency of $0.5$ is an absolute threshold below which quantum interferences cannot be measured. However, alternative statistical techniques suggest that this threshold can be overcome at the price of increasing the statistics used for the reconstruction. In the following we present numerical experiments proving that quantum interferences can be measured even with a detection efficiency smaller than $0.5$. At the same time we provide a guideline for handling the tomographic reconstruction of quantum states based on homodyne data collected by low efficiency detectors.
We present a novel method for quantum tomography of multi-qubit states. We apply the method to spin-multi-photon states, which we produce by periodic excitation of a semiconductor quantum-dot- confined spin every 1/4 of its coherent precession period. These timed excitations lead to the deterministic generation of strings of entangled photons in a cluster state. We show that our method can be used for characterizing the periodic process map, which produces the photonic cluster. From the measured process map, we quantify the robustness of the entanglement in the cluster. The 3-fold enhanced generation rate over previous demonstrations reduces the spin decoherence between the pulses and thereby increases the entanglement.