Do you want to publish a course? Click here

Complexity and integrability in 4D bi-rational maps with two invariants

117   0   0.0 ( 0 )
 Added by Giorgio Gubbiotti
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this letter we give fourth-order autonomous recurrence relations with two invariants, whose degree growth is cubic or exponential. These examples contradict the common belief that maps with sufficiently many invariants can have at most quadratic growth. Cubic growth may reflect the existence of non-elliptic fibrations of invariants, whereas we conjecture that the exponentially growing cases lack the necessary conditions for the applicability of the discrete Liouville theorem.



rate research

Read More

In this paper we present a class of four-dimensional bi-rational maps with two invariants satisfying certain constraints on degrees. We discuss the integrability properties of these maps from the point of view of degree growth and Liouville integrability.
67 - N. Joshi , CM. Viallet 2017
We provide new examples of integrable rational maps in four dimensions with two rational invariants, which have unexpected geometric properties, as for example orbits confined to non algebraic varieties, and fall outside classes studied by earlier authors. We can reconstruct the map from both invariants. One of the invariants defines the map unambiguously, while the other invariant also defines a new map leading to non trivial fibrations of the space of initial conditions.
We prove that integrability of a dispersionless Hirota type equation implies the symplectic Monge-Ampere property in any dimension $geq 4$. In 4D this yields a complete classification of integrable dispersionless PDEs of Hirota type through a list of heavenly type equations arising in self-dual gravity. As a by-product of our approach we derive an involutive system of relations characterising symplectic Monge-Ampere equations in any dimension. Moreover, we demonstrate that in 4D the requirement of integrability is equivalent to self-duality of the conformal structure defined by the characteristic variety of the equation on every solution, which is in turn equivalent to the existence of a dispersionless Lax pair. We also give a criterion of linerisability of a Hirota type equation via flatness of the corresponding conformal structure, and study symmetry properties of integrable equations.
We derive and analyze a three dimensional model of a figure skater. We model the skater as a three-dimensional body moving in space subject to a non-holonomic constraint enforcing movement along the skates direction and holonomic constraints of continuous contact with ice and pitch constancy of the skate. For a static (non-articulated) skater, we show that the system is integrable if and only if the projection of the center of mass on skates direction coincides with the contact point with ice and some mild (and realistic) assumptions on the directions of inertias axes. The integrability is proved by showing the existence of two new constants of motion linear in momenta, providing a new and highly nontrivial example of an integrable non-holonomic mechanical system. We also consider the case when the projection of the center of mass on skates direction does not coincide with the contact point and show that this non-integrable case exhibits apparent chaotic behavior, by studying the divergence of nearby trajectories We also demonstrate the intricate behavior during the transition from the integrable to chaotic case. Our model shows many features of real-life skating, especially figure skating, and we conjecture that real-life skaters may intuitively use the discovered mechanical properties of the system for the control of the performance on ice.
54 - G. Sparano , G. Vilasi 2000
Geometric structures underlying commutative and non commutative integrable dynamics are analyzed. They lead to a new characterization of noncommutative integrability in terms of spectral properties and of Nijenhuis torsion of an invariant (1,1) tensor field. The construction of compatible symplectic structures is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا