No Arabic abstract
We prove that integrability of a dispersionless Hirota type equation implies the symplectic Monge-Ampere property in any dimension $geq 4$. In 4D this yields a complete classification of integrable dispersionless PDEs of Hirota type through a list of heavenly type equations arising in self-dual gravity. As a by-product of our approach we derive an involutive system of relations characterising symplectic Monge-Ampere equations in any dimension. Moreover, we demonstrate that in 4D the requirement of integrability is equivalent to self-duality of the conformal structure defined by the characteristic variety of the equation on every solution, which is in turn equivalent to the existence of a dispersionless Lax pair. We also give a criterion of linerisability of a Hirota type equation via flatness of the corresponding conformal structure, and study symmetry properties of integrable equations.
Equations of dispersionless Hirota type have been thoroughly investigated in the mathematical physics and differential geometry literature. It is known that the parameter space of integrable Hirota type equations in 3D is 21-dimensional and the action of the natural equivalence group Sp(6, R) on the parameter space has an open orbit. However the structure of the `master-equation corresponding to this orbit remained elusive. Here we prove that the master-equation is specified by the vanishing of any genus 3 theta constant with even characteristic. The rich geometry of integrable Hirota type equations sheds new light on local differential geometry of the genus 3 hyperelliptic divisor, in particular, the integrability conditions can be viewed as local differential-geometric constraints that characterise the hyperelliptic divisor uniquely modulo Sp(6, C)-equivalence.
R. Hirota and K. Kimura discovered integrable discretizations of the Euler and the Lagrange tops, given by birational maps. Their method is a specialization to the integrable context of a general discretization scheme introduced by W. Kahan and applicable to any vector field with a quadratic dependence on phase variables. According to a proposal by T. Ratiu, discretizations of the Hirota-Kimura type can be considered for numerous integrable systems of classical mechanics. Due to a remarkable and not well understood mechanism, such discretizations seem to inherit the integrability for all algebraically completely integrable systems. We introduce an experimental method for a rigorous study of integrability of such discretizations. Application of this method to the Hirota-Kimura type discretization of the Clebsch system leads to the discovery of four functionally independent integrals of motion of this discrete time system, which turn out to be much more complicated than the integrals of the continuous time system. Further, we prove that every orbit of the discrete time Clebsch system lies in an intersection of four quadrics in the six-dimensional phase space. Analogous results hold for the Hirota-Kimura type discretizations for all commuting flows of the Clebsch system, as well as for the $so(4)$ Euler top.
The equations of Loewner type can be derived in two very different contexts: one of them is complex analysis and the theory of parametric conformal maps and the other one is the theory of integrable systems. In this paper we compare the both approaches. After recalling the derivation of Lowner equations based on complex analysis we review one- and multi-variable reductions of dispersionless integrable hierarhies (dKP, dBKP, dToda, and dDKP). The one-vaiable reductions are described by solutions of differe
In this note we obtain the characterization for asymptotic directions on various subgroups of the diffeomorphism group. We give a simple proof of non-existence of such directions for area-preserving diffeomorphisms of closed surfaces of non-zero curvature. Finally, we exhibit the common origin of the Monge-Ampere equations in 2D fluid dynamics and mass transport.
A large class of semi-Hamiltonian systems of hydrodynamic type is interpreted as the equations governing families of critical points of functions obeying the classical linear Darboux equations for conjugate nets.The distinguished role of the Euler-Poisson-Darboux equations and associated Lauricella-type functions is emphasised. In particular, it is shown that the classical g-phase Whitham equations for the KdV and NLS equations are obtained via a g-fold iterated Darboux-type transformation generated by appropriate Lauricella functions.