Do you want to publish a course? Click here

Hunting for Heavy Winos in the Galactic Center

61   0   0.0 ( 0 )
 Added by Lucia Rinchiuso
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observing gamma rays using ground-based atmospheric Cherenkov telescopes provides one of the only probes of heavy weakly interacting dark matter. A canonical target is the thermal wino, for which the strongest limits come from searches for photon lines from annihilations in the Galactic Center. Irreducible finite energy resolution effects motivate refining the prediction for a wino signal beyond the photon line approximation; recently, modern effective field theory techniques have been utilized to obtain a precise calculation of the full photon energy spectrum from wino annihilation. In this paper, we investigate the implications for a realistic mock H.E.S.S.-like line search. We emphasize the impact of including the non-trivial spectral shape, and we carefully treat the region of interest, presenting results for choices between $1^{circ}$ and $4^{circ}$ from the Galactic Center. Projected limits for wino masses from $1$-$70$ TeV are interpreted as a constraint on the wino annihilation rate, or alternatively as the minimum core size required such that the wino is not excluded. If there is a thermal wino, H.E.S.S. will be able to probe cores of several kpc, which would begin to cause tension between this dark matter candidate and astrophysical observations/simulations.



rate research

Read More

A TeV scale electroweak particle is a well motivated candidate for the dark matter (DM) of our Universe. Yet such a particle may only be detectable using indirect detection instruments sensitive to TeV-scale gamma rays that can result from dark matter annihilations. We present a mock analysis of the sensitivity for the present ground-based Cherenkov telescope array H.E.S.S. (High Energy Spectroscopic System) to detect TeV scale DM in the Galactic Center region. The work combines next-to-leading-logarithmic order calculations for the annihilation photon spectrum, as well as a comprehensive treatment of detector effects and expected backgrounds. Forecast limits on the sensitivity of H.E.S.S. have been derived across the important TeV mass range, assuming different DM density profiles and focusing on the canonical WIMP dark matter candidate Wino.These limits test our present and future ability to probe the predicted thermal cross section for some of the most promising DM candidates that could be discovered in the coming decade.
We present near-infrared (IR) spectra of two planetary nebula (PN) candidates in close lines of sight toward the Galactic center (GC) using the Gemini Near-Infrared Spectrograph (GNIRS) at Gemini North. High-resolution images from radio continuum and narrow-band IR observations reveal ringlike or barrel-shaped morphologies of these objects, and their mid-IR spectra from the Spitzer Space Telescope exhibit rich emission lines from highly-excited species such as [S IV], [Ne III], [Ne V], and [O IV]. We also derive elemental abundances using the Cloudy synthetic models, and find an excess amount of the $s$-process element Krypton in both targets, which supports their nature as PN. We estimate foreground extinction toward each object using near-IR hydrogen recombination lines, and find significant visual extinctions ($A_V > 20$). The distances inferred from the size versus surface brightness relation of other PNe are $9.0pm1.6$ kpc and $7.6pm1.6$ kpc for SSTGC 580183 and SSTGC 588220, respectively. These observed properties along with abundance patterns and their close proximity to Sgr A$^*$ (projected distances $<20$ pc) make it highly probable that these objects are the first confirmed PN objects in the nuclear stellar disk. The apparent scarcity of such objects resembles the extremely low rate of PN formation in old stellar systems, but is in line with the current rate of the sustained star formation activity in the Central Molecular Zone.
We re-examine evidence that the Galactic Center Excess (GCE) originates primarily from point sources (PSs). We show that in our region of interest, non-Poissonian template fitting (NPTF) evidence for GCE PSs is an artifact of unmodeled north-south asymmetry of the GCE. This asymmetry is strongly favored by the fit (although it is unclear if this is physical), and when it is allowed, the preference for PSs becomes insignificant. We reproduce this behavior in simulations, including detailed properties of the spurious PS population. We conclude that NTPF evidence for GCE PSs is highly susceptible to certain systematic errors, and should not at present be taken to robustly disfavor a dominantly smooth GCE.
We present the effective $J$-factors for the Milky Way for scenarios in which dark matter annihilation is p-wave or d-wave suppressed. We find that the velocity suppression of dark matter annihilation can have a sizable effect on the morphology of a potential dark matter annihilation signal in the Galactic Center. The gamma-ray flux from the innermost region of the Galactic Center is in particular suppressed. We find that for dark matter density profiles with steep inner slopes, the morphology of the Inner Galaxy gamma-ray emission in p-wave models can be made similar to the morphology in standard s-wave models. This similarity may suggest that model discrimination between s-wave and p-wave is challenging, for example, when fitting the Galactic Center excess. However, we show that it is difficult to simultaneously match s- and p-wave morphologies at both large and small angular scales. The $J$-factors we calculate may be implemented with astrophysical foreground models to self-consistently determine the morphology of the excess with velocity-suppressed dark matter annihilation.
The Galactic Center GeV excess (GCE) has garnered great interest as a possible signal of either dark matter annihilation or some novel astrophysical phenomenon, such as a new population of gamma-ray emitting pulsars. In a companion paper, we showed that in a $10^circ$ radius region of interest (ROI) surrounding the Galactic Center, apparent evidence for GCE point sources (PSs) from non-Poissonian template fitting (NPTF) is actually an artifact of unmodeled north-south asymmetry of the GCE. In this work, we develop a simplified analytic description of how signal mismodeling can drive an apparent preference for a PS population, and demonstrate how the behavior pointed out in the companion paper also appears in simpler simulated datasets that contain no PS signals at all. We explore the generality of this behavior in the real gamma-ray data, and discuss the implications for past and future studies using NPTF techniques. While the drop in PS preference once north-south asymmetry is included is not ubiquitous in larger ROIs, we show that any overly-rigid signal model is expected to yield a spurious PS signal that can appear very convincing: as well as apparent significance comparable to what one would expect from a true PS population, the signal can exhibit stability against a range of variations in the analysis, and a source count function that is very consistent with previous apparent NPTF-based detections of a GCE PS population. This contrasts with previously-studied forms of systematic mismodeling which are unlikely to mimic a PS population in the same way. In the light of this observation, and its explicit realization in the region where the GCE is brightest, we argue that a dominantly smooth origin for the GCE is not in tension with existing NPTF analyses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا