Do you want to publish a course? Click here

The ActivityNet Large-Scale Activity Recognition Challenge 2018 Summary

94   0   0.0 ( 0 )
 Added by Victor Escorcia
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The 3rd annual installment of the ActivityNet Large- Scale Activity Recognition Challenge, held as a full-day workshop in CVPR 2018, focused on the recognition of daily life, high-level, goal-oriented activities from user-generated videos as those found in internet video portals. The 2018 challenge hosted six diverse tasks which aimed to push the limits of semantic visual understanding of videos as well as bridge visual content with human captions. Three out of the six tasks were based on the ActivityNet dataset, which was introduced in CVPR 2015 and organized hierarchically in a semantic taxonomy. These tasks focused on tracing evidence of activities in time in the form of proposals, class labels, and captions. In this installment of the challenge, we hosted three guest tasks to enrich the understanding of visual information in videos. The guest tasks focused on complementary aspects of the activity recognition problem at large scale and involved three challenging and recently compiled datasets: the Kinetics-600 dataset from Google DeepMind, the AVA dataset from Berkeley and Google, and the Moments in Time dataset from MIT and IBM Research.



rate research

Read More

The ActivityNet Large Scale Activity Recognition Challenge 2017 Summary: results and challenge participants papers.
The Low-Power Image Recognition Challenge (LPIRC, https://rebootingcomputing.ieee.org/lpirc) is an annual competition started in 2015. The competition identifies the best technologies that can classify and detect objects in images efficiently (short execution time and low energy consumption) and accurately (high precision). Over the four years, the winners scores have improved more than 24 times. As computer vision is widely used in many battery-powered systems (such as drones and mobile phones), the need for low-power computer vision will become increasingly important. This paper summarizes LPIRC 2018 by describing the three different tracks and the winners solutions.
In 2015 we began a sub-challenge at the EndoVis workshop at MICCAI in Munich using endoscope images of ex-vivo tissue with automatically generated annotations from robot forward kinematics and instrument CAD models. However, the limited background variation and simple motion rendered the dataset uninformative in learning about which techniques would be suitable for segmentation in real surgery. In 2017, at the same workshop in Quebec we introduced the robotic instrument segmentation dataset with 10 teams participating in the challenge to perform binary, articulating parts and type segmentation of da Vinci instruments. This challenge included realistic instrument motion and more complex porcine tissue as background and was widely addressed with modifications on U-Nets and other popular CNN architectures. In 2018 we added to the complexity by introducing a set of anatomical objects and medical devices to the segmented classes. To avoid over-complicating the challenge, we continued with porcine data which is dramatically simpler than human tissue due to the lack of fatty tissue occluding many organs.
This technical report presents an overview of our solution used in the submission to ActivityNet Challenge 2019 Task 1 (textbf{temporal action proposal generation}) and Task 2 (textbf{temporal action localization/detection}). Temporal action proposal indicates the temporal intervals containing the actions and plays an important role in temporal action localization. Top-down and bottom-up methods are the two main categories used for proposal generation in the existing literature. In this paper, we devise a novel Multi-Granularity Fusion Network (MGFN) to combine the proposals generated from different frameworks for complementary filtering and confidence re-ranking. Specifically, we consider the diversity comprehensively from multiple perspectives, e.g. the characteristic aspect, the data aspect, the model aspect and the result aspect. Our MGFN achieves the state-of-the-art performance on the temporal action proposal task with 69.85 AUC score and the temporal action localization task with 38.90 mAP on the challenge testing set.
Food recognition plays an important role in food choice and intake, which is essential to the health and well-being of humans. It is thus of importance to the computer vision community, and can further support many food-oriented vision and multimodal tasks. Unfortunately, we have witnessed remarkable advancements in generic visual recognition for released large-scale datasets, yet largely lags in the food domain. In this paper, we introduce Food2K, which is the largest food recognition dataset with 2,000 categories and over 1 million images.Compared with existing food recognition datasets, Food2K bypasses them in both categories and images by one order of magnitude, and thus establishes a new challenging benchmark to develop advanced models for food visual representation learning. Furthermore, we propose a deep progressive region enhancement network for food recognition, which mainly consists of two components, namely progressive local feature learning and region feature enhancement. The former adopts improved progressive training to learn diverse and complementary local features, while the latter utilizes self-attention to incorporate richer context with multiple scales into local features for further local feature enhancement. Extensive experiments on Food2K demonstrate the effectiveness of our proposed method. More importantly, we have verified better generalization ability of Food2K in various tasks, including food recognition, food image retrieval, cross-modal recipe retrieval, food detection and segmentation. Food2K can be further explored to benefit more food-relevant tasks including emerging and more complex ones (e.g., nutritional understanding of food), and the trained models on Food2K can be expected as backbones to improve the performance of more food-relevant tasks. We also hope Food2K can serve as a large scale fine-grained visual recognition benchmark.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا