Do you want to publish a course? Click here

Planar and Radial Kinks in Nonlinear Klein-Gordon Models: Existence, Stability and Dynamics

74   0   0.0 ( 0 )
 Added by Ricardo Carretero
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the $phi^4$ variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schr{o}dinger equations, and we study the transverse stability of these kinks. This enables us to characterize one-dimensional planar kinks as solitonic filaments, whose stationary states and corresponding spectral stability can be characterized not only in the homogeneous case, but also in the presence of external potentials. Beyond that, the full nonlinear (transverse) dynamics of such filaments are described using the reduced, one-dimensional, adiabatic invariant formulation. For radial kinks, this approach confirms their azimuthal stability. It also predicts the possibility of creating stationary and stable ring-like kinks. In all cases we corroborate the results of our methodology with full numerics on the original sine-Gordon and $phi^4$ models.



rate research

Read More

Klein-Gordon equations describe the dynamics of waves/particles in sub-atomic scales. For nonlinear Klein-Gordon equations, their breather solutions are usually known as time periodic solutions with the vanishing spatial-boundary condition. The existence of breather solution is known for the Sine-Gordon equations, while the Sine-Gordon equations are also known as the soliton equation. The breather solutions is a certain kind of time periodic solutions that are not only play an essential role in the bridging path to the chaotic dynamics, but provide multi-dimensional closed loops inside phase space. In this paper, based on the high-precision numerical scheme, the appearance of breather mode is studied for nonlinear Klein-Gordon equations with periodic boundary condition. The spatial periodic boundary condition is imposed, so that the breathing-type solution in our scope is periodic with respect both to time and space. In conclusion, the existence condition of space-time periodic solution is presented, and the compact manifolds inside the infinite-dimensional dynamical system is shown. The space-time breather solutions of Klein-Gordon equations can be a fundamental building block for the sub-atomic nonlinear dynamics.
In this work, we revisit the question of stability of multibreather configurations, i.e., discrete breathers with multiple excited sites at the anti-continuum limit of uncoupled oscillators. We present two methods that yield quantitative predictions about the Floquet multipliers of the linear stability analysis around such exponentially localized in space, time-periodic orbits, based on the Aubry band method and the MacKay effective Hamiltonian method and prove that their conclusions are equivalent. Subsequently, we showcase the usefulness of the methods by a series of case examples including one-dimensional multi-breathers, and two-dimensional vortex breathers in the case of a lattice of linearly coupled oscillators with the Morse potential and in that of the discrete $phi^4$ model.
80 - G. T. Adamashvili 2021
The generalized perturbative reduction method is used to find the two-component vector breather solution of the nonlinear Klein-Gordon equation. It is shown that the nonlinear pulse oscillates with the sum and difference of frequencies and wave numbers in the region of the carrier wave frequency and wave number. Explicit analytical expressions for the profile and parameters of the nonlinear pulse are obtained. In the particular case, the vector breather coincides with the vector $0pi$ pulse of self-induced transparency.
We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schroedinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-lattice-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the hexapole of alternating phases, as well as the vortex of topological charge S=2 have intervals of stability; among three-site states, only the vortex of topological charge S=1 may be stable in the case of focusing nonlinearity. These conclusions are confirmed both for hexagonal and for honeycomb lattices by means of detailed numerical bifurcation analysis of the stationary states from the anticontinuum limit, and by direct simulations to monitor the dynamical instabilities, when the latter arise. The dynamics reveal a wealth of nonlinear behavior resulting not only in single-site solitary wave forms, but also in robust multisite breathing structures.
In this paper we prove the existence of vortices, namely standing waves with non null angular momentum, for the nonlinear Klein-Gordon equation in dimension $Ngeq 3$. We show with variational methods that the existence of these kind of solutions, that we have called emph{hylomorphic vortices}, depends on a suitable energy-charge ratio. Our variational approach turns out to be useful for numerical investigations as well. In particular, some results in dimension N=2 are reported, namely exemplificative vortex profiles by varying charge and angular momentum, together with relevant trends for vortex frequency and energy-charge ratio. The stability problem for hylomorphic vortices is also addressed. In the absence of conclusive analytical results, vortex evolution is numerically investigated: the obtained results suggest that, contrarily to solitons with null angular momentum, vortex are unstable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا