Do you want to publish a course? Click here

Multibreather and vortex breather stability in Klein--Gordon lattices: Equivalence between two different approaches

171   0   0.0 ( 0 )
 Added by Jesus Cuevas
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we revisit the question of stability of multibreather configurations, i.e., discrete breathers with multiple excited sites at the anti-continuum limit of uncoupled oscillators. We present two methods that yield quantitative predictions about the Floquet multipliers of the linear stability analysis around such exponentially localized in space, time-periodic orbits, based on the Aubry band method and the MacKay effective Hamiltonian method and prove that their conclusions are equivalent. Subsequently, we showcase the usefulness of the methods by a series of case examples including one-dimensional multi-breathers, and two-dimensional vortex breathers in the case of a lattice of linearly coupled oscillators with the Morse potential and in that of the discrete $phi^4$ model.



rate research

Read More

80 - G. T. Adamashvili 2021
The generalized perturbative reduction method is used to find the two-component vector breather solution of the nonlinear Klein-Gordon equation. It is shown that the nonlinear pulse oscillates with the sum and difference of frequencies and wave numbers in the region of the carrier wave frequency and wave number. Explicit analytical expressions for the profile and parameters of the nonlinear pulse are obtained. In the particular case, the vector breather coincides with the vector $0pi$ pulse of self-induced transparency.
Klein-Gordon equations describe the dynamics of waves/particles in sub-atomic scales. For nonlinear Klein-Gordon equations, their breather solutions are usually known as time periodic solutions with the vanishing spatial-boundary condition. The existence of breather solution is known for the Sine-Gordon equations, while the Sine-Gordon equations are also known as the soliton equation. The breather solutions is a certain kind of time periodic solutions that are not only play an essential role in the bridging path to the chaotic dynamics, but provide multi-dimensional closed loops inside phase space. In this paper, based on the high-precision numerical scheme, the appearance of breather mode is studied for nonlinear Klein-Gordon equations with periodic boundary condition. The spatial periodic boundary condition is imposed, so that the breathing-type solution in our scope is periodic with respect both to time and space. In conclusion, the existence condition of space-time periodic solution is presented, and the compact manifolds inside the infinite-dimensional dynamical system is shown. The space-time breather solutions of Klein-Gordon equations can be a fundamental building block for the sub-atomic nonlinear dynamics.
We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the $phi^4$ variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schr{o}dinger equations, and we study the transverse stability of these kinks. This enables us to characterize one-dimensional planar kinks as solitonic filaments, whose stationary states and corresponding spectral stability can be characterized not only in the homogeneous case, but also in the presence of external potentials. Beyond that, the full nonlinear (transverse) dynamics of such filaments are described using the reduced, one-dimensional, adiabatic invariant formulation. For radial kinks, this approach confirms their azimuthal stability. It also predicts the possibility of creating stationary and stable ring-like kinks. In all cases we corroborate the results of our methodology with full numerics on the original sine-Gordon and $phi^4$ models.
We consider the energy landscape of a dissipative Klein-Gordon lattice with a $phi^4$ on-site potential. Our analysis is based on suitable energy arguments, combined with a discrete version of the L{}ojasiewicz inequality, in order to justify the convergence to a single, nontrivial equilibrium for all initial configurations of the lattice. Then, global bifurcation theory is explored, to illustrate that in the discrete regime all linear states lead to nonlinear generalizations of equilibrium states. Direct numerical simulations reveal the rich structure of the equilibrium set, consisting of non-trivial topological (kink-shaped) interpolations between the adjacent minima of the on-site potential, and the wealth of dynamical convergence possibilities. These dynamical evolution results also provide insight on the potential stability of the equilibrium branches, and glimpses of the emerging global bifurcation structure, elucidating the role of the interplay between discreteness, nonlinearity and dissipation.
209 - Hao Li , Chong Liu , Wei Zhao 2019
We study and characterize the breather-induced quantized superfluid vortex filaments which correspond to the Kuznetsov-Ma breather and super-regular breather excitations developing from localised perturbations. Such vortex filaments, emerging from an otherwise perturbed helical vortex, exhibit intriguing loop structures corresponding to the large amplitude of breathers due to the dual action of bending and twisting of the vortex. The loop induced by Kuznetsov-Ma breather emerges periodically as time increases, while the loop structure triggered by super-regular breather---the loop pair---exhibits striking symmetry breaking due to the broken reflection symmetry of the group velocities of super-regular breather. In particular, we identify explicitly the generation conditions of these loop excitations by introducing a physical quantity---the integral of the relative quadratic curvature---which corresponds to the effective energy of breathers. Although the nature of nonlinearity, it is demonstrated that this physical quantity shows a linear correlation with the loop size. These results will deepen our understanding of breather-induced vortex filaments and be helpful for controllable ring-like excitations on the vortices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا