Enhanced sensitivity in electromagnetically induced transparency (EIT) can be obtained by the use of noise correlation spectroscopy between the fields involved in the process. Here, we investigate EIT in a cold ($< 1$ mK) rubidium vapor and demonstrate sensitivity to detect weak light-induced forces on the atoms. A theoretical model is developed and shows good agreement with our measurements, enabling the attribution of the observed effects to the coupling of the atomic states to their motion. The effects remain unnoticed on the measurement of the mean fields but are clearly manifest in their correlations.
Besides being a source of energy, light can also cool gases of atoms down to the lowest temperatures ever measured, where atomic motion almost stops. The research field of cold atoms has emerged as a multidisciplinary one, highly relevant, e.g., for precision measurements, quantum gases, simulations of many-body physics, and atom optics. In this focus article, we present the field as seen in 2015, and emphasise the fundamental role in its development that has been played by mastering.
The coherence of quantum systems is crucial to quantum information processing. While it has been demonstrated that superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and therefore the quantum character of the information in these systems. An alternative is to share the tasks between different quantum platforms, e.g. cold atoms storing the quantum information processed by superconducting circuits. In our experiment, we characterize the coherence of superposition states of 87Rb atoms magnetically trapped on a superconducting atom-chip. We load atoms into a persistent-current trap engineered in the vicinity of an off-resonance coplanar resonator, and observe that the coherence of hyperfine ground states is preserved for several seconds. We show that large ensembles of a million of thermal atoms below 350 nK temperature and pure Bose-Einstein condensates with 3.5 x 10^5 atoms can be prepared and manipulated at the superconducting interface. This opens the path towards the rich dynamics of strong collective coupling regimes.
We report a detailed investigation on the properties of correlation spectra for cold atoms under the condition of Electromagnetically Induced Transparency (EIT). We describe the transition in the system from correlation to anti-correlation as the intensity of the fields increases. Such transition occurs for laser frequencies around the EIT resonance, which is characterized by a correlation peak. The transition point between correlation and anti-correlation is independent of power broadening and provides directly the ground-state coherence time. We introduce a method to extract in real time the correlation spectra of the system. The experiments were done in two distinct magneto-optical traps (MOT), one for cesium and the other for rubidium atoms, employing different detection schemes. A simplified theory is introduced assuming three-level atoms in $Lambda$ configuration interacting with a laser with stochastic phase fluctuations, providing a good agreement with the experimental observations.
Noise measurement is a powerful tool to investigate many phenomena from laser characterization to quantum behavior of light. In this paper, we report on intensity noise measurements obtained when a laser beam is transmitted through a large cloud of cold atoms. While this measurement could possibly investigate complex processes such as the influence of atomic motion, one is first limited by the conversion of the intrinsic laser frequency noise to intensity noise via the atomic resonance. This conversion is studied here in details. We show that, while experimental intensity noise spectra collapse onto the same curve at low Fourier frequencies, some differences appear at higher frequencies when the probe beam is detuned from the center of the resonance line. A simple model, based on a mean-field approach, which corresponds to describing the atomic cloud by a dielectric susceptibility, is sufficient to understand the main features. Using this model, the noise spectra allow extracting some quantitative informations on the laser noise as well as on the atomic sample.
Experiments on the spectroscopy of the Forster resonance Rb(37P)+Rb(37P) -> Rb(37S)+Rb(38S) and microwave transitions nP -> nS, nD between Rydberg states of cold Rb atoms in a magneto-optical trap have been performed. Under ordinary conditions, all spectra exhibited a 2-3 MHz line width independently of the interaction time of atoms with each other or with microwave radiation, although the ultimate resonance width should be defined by the inverse interaction time. Analysis of the experimental conditions has shown that the main source of the line broadening was the inhomogeneous electric field of cold photoions appeared at the excitation of initial Rydberg nP states by broadband pulsed laser radiation. Using an additional pulse of the electric field, which rapidly removed the photoions after the laser pulse, lead to a substantial narrowing of the microwave and Forster resonances. An analysis of various sources of the line broadening in cold Rydberg atoms has been conducted.