Do you want to publish a course? Click here

Peculiar Behavior of Si Cluster Ions in Solid Al

390   0   0.0 ( 0 )
 Added by Shigeo Kawata
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A peculiar ion behavior is found in a Si cluster, moving with a speed of ~0.22c (c: speed of light) in a solid Al plasma: the Si ion, moving behind the forward moving Si ion closely in a several angstrom distance in the cluster, feels the wake field generated by the forward Si. The interaction potential on the rear Si may balance the deceleration backward force by itself with the acceleration forward force by the forward Si in the longitudinal moving direction. The forward Si would be decelerated normally. However, the deceleration of the rear Si, moving behind closely, would be reduced significantly, and the rear Si may catch up and overtake the forward moving Si in the cluster during the Si cluster interaction with the high-density Al plasma.



rate research

Read More

In a novel experiment that images the momentum distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas. We demonstrate that the introduction of a heating pulse prior to the main laser pulse increases the intensity of the shock wave, producing a strong burst of quasi-monochromatic ions with an energy spread of less than 15%. Numerical hydrodynamic calculations confirm the appearance of accelerating shock waves, and provide a mechanism for the generation and control of these shock waves. This observation of distinct shock waves in dense plasmas enables the control, study, and exploitation of nanoscale shock phenomena with tabletop-scale lasers.
The expansion of laser-irradiated clusters or nanodroplets depends strongly on the amount of energy delivered to the electrons and can be controlled by using appropriately shaped laser pulses. In this paper, a self-consistent kinetic model is used to analyze the transition from quasineutral, hydrodinamic-like expansion regimes to the Coulomb explosion (CE) regime when increasing the ratio between the thermal energy of the electrons and the electrostatic energy stored in the cluster. It is shown that a suitable double-pump irradiation scheme can produce hybrid expansion regimes, wherein a slow hydrodynamic expansion is followed by a fast CE, leading to ion overtaking and producing multiple ion flows expanding with different velocities. This can be exploited to obtain intracluster fusion reactions in both homonuclear deuterium clusters and heteronuclear deuterium-tritium clusters, as also proved by three-dimensional molecular-dynamics simulations.
Transition metal impurities such as nickel, copper, and iron, in solid-state materials like silicon have a significant impact on the electrical performance of integrated circuits and solar cells. To study the impact of copper impurities inside bulk silicon on the electrical properties of the material, one needs to understand the configurational space of copper atoms incorporated inside the silicon lattice. In this work, we performed ReaxFF reactive force field based molecular dynamics simulations, studying different configurations of individual and crystalline copper atoms inside bulk silicon by looking at the diffusional behavior of copper in silicon. The ReaxFF Cu/Si parameter set was developed by training against DFT data, including the energy barrier for an individual Cu-atom inside a silicon lattice. We found that the diffusion of copper atoms has a direct relationship with the temperature. Moreover, it is also shown that individual copper atoms start to clusterize inside bulk silicon at elevated temperatures. Our simulation results provide a comprehensive picture of the effects of temperature and copper concentration on the crystallization of individual copper inside silicon lattice. Finally, the stress-strain relationship of Cu/Si compounds under uniaxial tensile loading have been obtained. Our results indicate a decrease in the elastic modulus with increasing level of Cu-impurity concentration. We observe spontaneous microcracking of the Si during the stress-strain tests as a consequence of the formation of a small Cu clusters adjacent to the Si surface.
The catalytic activities of the atomic Y-, Ru-, At-, In-, Pd-, Ag-, Pt-, and Os- ions have been investigated theoretically using the atomic Au- ion as the benchmark for the selective partial oxidation of methane to methanol without CO2 emission. Dispersion-corrected density-functional theory has been used for the investigation. From the energy barrier calculations and the thermodynamics of the reactions, we conclude that the catalytic effect of the atomic Ag-, At-, Ru-, and Os- ions is higher than that of the atomic Au- ion catalysis of CH4 conversion to methanol. By controlling the temperature around 290K (Os-), 300K (Ag-), 310K (At-), 320K (Ru-) and 325K (Au-) methane can be completely oxidized to methanol without the emission of CO2. We conclude by recommending the investigation of the catalytic activities of combinations of the above negative ions for significant enhancement of the selective partial oxidation of methane to methanol.
A variant of coupled-cluster theory is described here, wherein the degrees of freedom are fluctuations of fragments between internally correlated states. The effects of intra-fragment correlation on the inter-fragment interaction are pre-computed and permanently folded into an effective Hamiltonian, thus avoiding redundant evaluations of local relaxations associated with coupled fluctuations. A companion article shows that a low-scaling step may be used to cast the electronic Hamiltonians of real systems into the form required. Two proof-of-principle demonstrations are presented here for non-covalent interactions. One uses harmonic oscillators, for which accuracy and algorithm structure can be carefully controlled in comparisons. The other uses small electronic systems (Be atoms) to demonstrate compelling accuracy and efficiency, also when inter-fragment electron exchange and charge transfer must be handled. Since the cost of the global calculation does not depend directly on the correlation models used for the fragments, this should provide a way to incorporate difficult electronic structure problems into large systems. This framework opens a promising path for building tunable, systematically improvable methods to capture properties of systems interacting with a large number of other systems. The extension to excited states is also straightforward.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا