Do you want to publish a course? Click here

Automatic Recognition of Student Engagement using Deep Learning and Facial Expression

105   0   0.0 ( 0 )
 Added by Omid Mohamad Nezami
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Engagement is a key indicator of the quality of learning experience, and one that plays a major role in developing intelligent educational interfaces. Any such interface requires the ability to recognise the level of engagement in order to respond appropriately; however, there is very little existing data to learn from, and new data is expensive and difficult to acquire. This paper presents a deep learning model to improve engagement recognition from images that overcomes the data sparsity challenge by pre-training on readily available basic facial expression data, before training on specialised engagement data. In the first of two steps, a facial expression recognition model is trained to provide a rich face representation using deep learning. In the second step, we use the models weights to initialize our deep learning based model to recognize engagement; we term this the engagement model. We train the model on our new engagement recognition dataset with 4627 engaged and disengaged samples. We find that the engagement model outperforms effective deep learning architectures that we apply for the first time to engagement recognition, as well as approaches using histogram of oriented gradients and support vector machines.



rate research

Read More

Facial expression recognition from videos in the wild is a challenging task due to the lack of abundant labelled training data. Large DNN (deep neural network) architectures and ensemble methods have resulted in better performance, but soon reach saturation at some point due to data inadequacy. In this paper, we use a self-training method that utilizes a combination of a labelled dataset and an unlabelled dataset (Body Language Dataset - BoLD). Experimental analysis shows that training a noisy student network iteratively helps in achieving significantly better results. Additionally, our model isolates different regions of the face and processes them independently using a multi-level attention mechanism which further boosts the performance. Our results show that the proposed method achieves state-of-the-art performance on benchmark datasets CK+ and AFEW 8.0 when compared to other single models.
Despite their continued popularity, categorical approaches to affect recognition have limitations, especially in real-life situations. Dimensional models of affect offer important advantages for the recognition of subtle expressions and more fine-grained analysis. We introduce a simple but effective facial expression analysis (FEA) system for dimensional affect, solely based on geometric features and Partial Least Squares (PLS) regression. The system jointly learns to estimate Arousal and Valence ratings from a set of facial images. The proposed approach is robust, efficient, and exhibits comparable performance to contemporary deep learning models, while requiring a fraction of the computational resources.
Micro-expressions (MEs) are involuntary facial movements revealing peoples hidden feelings in high-stake situations and have practical importance in medical treatment, national security, interrogations and many human-computer interaction systems. Early methods for MER mainly based on traditional appearance and geometry features. Recently, with the success of deep learning (DL) in various fields, neural networks have received increasing interests in MER. Different from macro-expressions, MEs are spontaneous, subtle, and rapid facial movements, leading to difficult data collection, thus have small-scale datasets. DL based MER becomes challenging due to above ME characters. To date, various DL approaches have been proposed to solve the ME issues and improve MER performance. In this survey, we provide a comprehensive review of deep micro-expression recognition (MER), including datasets, deep MER pipeline, and the bench-marking of most influential methods. This survey defines a new taxonomy for the field, encompassing all aspects of MER based on DL. For each aspect, the basic approaches and advanced developments are summarized and discussed. In addition, we conclude the remaining challenges and and potential directions for the design of robust deep MER systems. To the best of our knowledge, this is the first survey of deep MER methods, and this survey can serve as a reference point for future MER research.
We present an approach that combines automatic features learned by convolutional neural networks (CNN) and handcrafted features computed by the bag-of-visual-words (BOVW) model in order to achieve state-of-the-art results in facial expression recognition. To obtain automatic features, we experiment with multiple CNN architectures, pre-trained models and training procedures, e.g. Dense-Sparse-Dense. After fusing the two types of features, we employ a local learning framework to predict the class label for each test image. The local learning framework is based on three steps. First, a k-nearest neighbors model is applied in order to select the nearest training samples for an input test image. Second, a one-versus-all Support Vector Machines (SVM) classifier is trained on the selected training samples. Finally, the SVM classifier is used to predict the class label only for the test image it was trained for. Although we have used local learning in combination with handcrafted features in our previous work, to the best of our knowledge, local learning has never been employed in combination with deep features. The experiments on the 2013 Facial Expression Recognition (FER) Challenge data set, the FER+ data set and the AffectNet data set demonstrate that our approach achieves state-of-the-art results. With a top accuracy of 75.42% on FER 2013, 87.76% on the FER+, 59.58% on AffectNet 8-way classification and 63.31% on AffectNet 7-way classification, we surpass the state-of-the-art methods by more than 1% on all data sets.
100 - Devesh Walawalkar 2017
This paper proposes to expand the visual understanding capacity of computers by helping it recognize human sign language more efficiently. This is carried out through recognition of facial expressions, which accompany the hand signs used in this language. This paper specially focuses on the popular Brazilian sign language (LIBRAS). While classifying different hand signs into their respective word meanings has already seen much literature dedicated to it, the emotions or intention with which the words are expressed havent primarily been taken into consideration. As from our normal human experience, words expressed with different emotions or mood can have completely different meanings attached to it. Lending computers the ability of classifying these facial expressions, can help add another level of deep understanding of what the deaf person exactly wants to communicate. The proposed idea is implemented through a deep neural network having a customized architecture. This helps learning specific patterns in individual expressions much better as compared to a generic approach. With an overall accuracy of 98.04%, the implemented deep network performs excellently well and thus is fit to be used in any given practical scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا