No Arabic abstract
The two-phase mixing layer formed between parallel gas and liquid streams is an important fundamental problem in turbulent multiphase flows. The problem is relevant to many industrial applications and natural phenomena, such as air-blast atomizers in fuel injection systems and breaking waves in the ocean. The velocity difference between the gas and liquid streams triggers an interfacial instability which can be convective or absolute depending on the stream properties and injection parameters. In the present study, a direct numerical simulation of a two-phase gas-liquid mixing layer that lie in the absolute instability regime is conducted. A dominant frequency is observed in the simulation and the numerical result agrees well with the prediction from viscous stability theory. As the interfacial wave plays a critical role in turbulence transition and development, the temporal evolution of turbulent fluctuations (such as the enstrophy) also exhibits a similar frequency. In order to investigate the statistical response of the multiphase turbulence flow, the simulation has been run for a long physical time so that time-averaging can be performed to yield the statistically converged results for Reynolds stresses and the turbulent kinetic energy (TKE) budget. An extensive mesh refinement study using from 8 million to about 4 billions cells has been carried out. The turbulent dissipation is shown to be highly demanding on mesh resolution compared to other terms in TKE budget. The results obtained with the finest mesh are shown to be not far from converged results of turbulent dissipation which allow us to obtain estimations of the Kolmogorov and Hinze scales. The computed Hinze scale is significantly larger than the size of droplets observed and does not seem to be a relevant length scale to describe the smallest size of droplets formed in atomization.
Previous works for a liquid suddenly contacting a gas at a supercritical pressure show the coexistence of both phases and the generation of diffusion layers on both sides of the liquid-gas interface due to thermodynamic phase equilibrium. A related numerical study of a laminar mixing layer between the liquid and gas streams in the near field of the splitter plate suggests that mass, momentum and thermal diffusion layers evolve in a self-similar manner at very high pressures. In this paper, the high-pressure, two-phase, laminar mixing-layer equations are recast in terms of a similarity variable. A liquid hydrocarbon and gaseous oxygen are considered. Freestream conditions and proper matching conditions at the liquid-gas interface are applied. To solve the system of equations, a real-fluid thermodynamic model based on the Soave-Redlich-Kwong equation of state is selected. A comparison with results obtained by directly solving the laminar mixing-layer equations shows the validity of the similarity approach applied to non-ideal two-phase flows. Even when the gas is hotter than the liquid, condensation can occur at high pressures while heat conducts into the liquid. Finally, a generalized correlation is proposed to represent the evolution of the mixing layer thickness for different problem setups.
The two-dimensional regular and chaotic electro-convective flow states of a dielectric liquid between two infinite parallel planar electrodes are investigated using a two-relaxation-time lattice Boltzmann method. Positive charges injected at the metallic planar electrode located at the bottom of the dielectric liquid layer are transported towards the grounded upper electrode by the synergy of the flow and the electric field. The various flow states can be characterized by a non-dimensional parameter, the electric Rayleigh number. Gradually increasing the electric Rayleigh number, the flow system sequentially evolves via quasi-periodic, periodic, and chaotic flow states with five identified bifurcations. The turbulence kinetic energy spectrum is shown to follow the -3 law as the flow approaches turbulence. The spectrum is found to follow a -5 law when the flow is periodic.
Numerical analysis of a shear layer between a cool liquid n-decane hydrocarbon and a hot oxygen gas at supercritical pressures shows that a well-defined phase equilibrium can be established. Variable properties are considered with the product of density and viscosity in the gas phase showing a nearly constant result within the laminar flow region with no instabilities. Sufficiently thick diffusion layers form around the liquid-gas interface to support the case of continuum theory and phase equilibrium. While molecules are exchanged for both species at all pressures, net mass flux across the interface shifts as pressure is increased. Net vaporization occurs for low pressures while net condensation occurs at higher pressures. For a mixture of n-decane and oxygen, the transition occurs around 50 bar. The equilibrium values at the interface quickly reach their downstream asymptotes. For all cases, profiles of diffusing-advecting quantities collapse to a similar solution (i.e., function of one independent variable). Validity of the boundary layer approximation and similarity are shown in both phases for Reynolds numbers greater than 239 at 150 bar. Results for other pressures are also taken at high Reynolds numbers. Thereby, the validity of the boundary layer approximation and similarity are expected. However, at very high pressures, the similar one-dimensional profiles vary for different problem constraints.
The ultimate goal of a sound theory of turbulence in fluids is to close in a rational way the Reynolds equations, namely to express the tensor of turbulent stress as a function of the time average of the velocity field. Based on the idea that dissipation in fully developed turbulence is by singular events resulting from an evolution described by the Euler equations, it has been recently observed that the closure problem is strongly restricted, and that it implies that the turbulent stress is a non local function in space of the average velocity field, a kind of extension of classical Boussinesq theory of turbulent viscosity. This leads to rather complex nonlinear integral equation(s) for the time averaged velocity field. This one satisfies some symmetries of the Euler equations. Such symmetries were used by Prandtl and Landau to make various predictions about the shape of the turbulent domain in simple geometries. We explore specifically the case of mixing layer for which the average velocity field only depends on the angle in the wedge behind the splitter plate. This solution yields a pressure difference between the two sides of the splitter which contributes to the lift felt by the plate. Moreover, because of the structure of the equations for the turbulent stress, one can satisfy the Cauchy-Schwarz inequalities, also called the realizability conditions, for this turbulent stress. Such realizability conditions cannot be satisfied with a simple turbulent viscosity.
The Tayler instability is a kink-type flow instability which occurs when the electrical current through a conducting fluid exceeds a certain critical value. Originally studied in the astrophysical context, the instability was recently shown to be also a limiting factor for the upward scalability of liquid metal batteries. In this paper, we continue our efforts to simulate this instability for liquid metals within the framework of an integro-differential equation approach. The original solver is enhanced by multi-domain support with Dirichlet-Neumann partitioning for the static boundaries. Particular focus is laid on the detailed influence of the axial electrical boundary conditions on the characteristic features of the Tayler instability, and, secondly, on the occurrence of electro-vortex flows and their relevance for liquid metal batteries.