Do you want to publish a course? Click here

Container solutions for HPC Systems: A Case Study of Using Shifter on Blue Waters

146   0   0.0 ( 0 )
 Added by Maxim Belkin
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Software container solutions have revolutionized application development approaches by enabling lightweight platform abstractions within the so-called containers. Several solutions are being actively developed in attempts to bring the benefits of containers to high-performance computing systems with their stringent security demands on the one hand and fundamental resource sharing requirements on the other. In this paper, we discuss the benefits and short-comings of such solutions when deployed on real HPC systems and applied to production scientific applications.We highlight use cases that are either enabled by or significantly benefit from such solutions. We discuss the efforts by HPC system administrators and support staff to support users of these type of workloads on HPC systems not initially designed with these workloads in mind focusing on NCSAs Blue Waters system.



rate research

Read More

Blue Waters is a Petascale-level supercomputer whose mission is to enable the national scientific and research community to solve grand challenge problems that are orders of magnitude more complex than can be carried out on other high performance computing systems. Given the important and unique role that Blue Waters plays in the U.S. research portfolio, it is important to have a detailed understanding of its workload in order to guide performance optimization both at the software and system configuration level as well as inform architectural balance tradeoffs. Furthermore, understanding the computing requirements of the Blue Waters workload (memory access, IO, communication, etc.), which is comprised of some of the most computationally demanding scientific problems, will help drive changes in future computing architectures, especially at the leading edge. With this objective in mind, the project team carried out a detailed workload analysis of Blue Waters.
We present a novel computational framework that connects Blue Waters, the NSF-supported, leadership-class supercomputer operated by NCSA, to the Laser Interferometer Gravitational-Wave Observatory (LIGO) Data Grid via Open Science Grid technology. To enable this computational infrastructure, we configured, for the first time, a LIGO Data Grid Tier-1 Center that can submit heterogeneous LIGO workflows using Open Science Grid facilities. In order to enable a seamless connection between the LIGO Data Grid and Blue Waters via Open Science Grid, we utilize Shifter to containerize LIGOs workflow software. This work represents the first time Open Science Grid, Shifter, and Blue Waters are unified to tackle a scientific problem and, in particular, it is the first time a framework of this nature is used in the context of large scale gravitational wave data analysis. This new framework has been used in the last several weeks of LIGOs second discovery campaign to run the most computationally demanding gravitational wave search workflows on Blue Waters, and accelerate discovery in the emergent field of gravitational wave astrophysics. We discuss the implications of this novel framework for a wider ecosystem of Higher Performance Computing users.
Traditionally, on-demand, rigid, and malleable applications have been scheduled and executed on separate systems. The ever-growing workload demands and rapidly developing HPC infrastructure trigger the interest of converging these applications on a single HPC system. Although allocating the hybrid workloads within one system could potentially improve system efficiency, it is difficult to balance the tradeoff between the responsiveness of on-demand requests, the incentive for malleable jobs, and the performance of rigid applications. In this study, we present several scheduling mechanisms to address the issues involved in co-scheduling on-demand, rigid, and malleable jobs on a single HPC system. We extensively evaluate and compare their performance under various configurations and workloads. Our experimental results show that our proposed mechanisms are capable of serving on-demand workloads with minimal delay, offering incentives for declaring malleability, and improving system performance.
Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed.
175 - Yuping Fan 2021
High-performance computing (HPC) is undergoing significant changes. Next generation HPC systems are equipped with diverse global and local resources, such as I/O burst buffer resources, memory resources (e.g., on-chip and off-chip RAM, external RAM/NVRA), network resources, and possibly other resources. Job schedulers play a crucial role in efficient use of resources. However, traditional job schedulers are single-objective and fail to efficient use of other resources. In this paper, we propose ROME, a novel multi-dimensional job scheduling framework to explore potential tradeoffs among multiple resources and provides balanced scheduling decision. Our design leverages genetic algorithm as the multi-dimensional optimization engine to generate fast scheduling decision and to support effective resource utilization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا