No Arabic abstract
We study the universal critical properties of the QED$_3$-Gross-Neveu-Yukawa model with $N$ flavors of four-component Dirac fermions coupled to a real scalar order parameter at four-loop order in the $epsilon$ expansion below four dimensions. For $N=1$, the model is conjectured to be infrared dual to the $SU(2)$-symmetric noncompact $mathbb{C}$P$^1$ model, which describes the deconfined quantum critical point of the Neel-valence-bond-solid transition of spin-1/2 quantum antiferromagnets on the two-dimensional square lattice. For $N=2$, the model describes a quantum phase transition between an algebraic spin liquid and a chiral spin liquid in the spin-1/2 kagome antiferromagnet. For general $N$ we determine the order parameter anomalous dimension, the correlation length exponent, the stability critical exponent, as well as the scaling dimensions of $SU(N)$ singlet and adjoint fermion mass bilinears at the critical point. We use Pade approximants to obtain estimates of critical properties in 2+1 dimensions.
Dirac and Weyl fermions appear as quasi-particle excitations in many different condensed-matter systems. They display various quantum transitions which represent unconventional universality classes related to the variants of the Gross-Neveu model. In this work we study the bosonized version of the standard Gross-Neveu model -- the Gross-Neveu-Yukawa theory -- at three-loop order, and compute critical exponents in $4-epsilon$ dimensions for general number of fermion flavors. Our results fully encompass the previously known two-loop calculations, and agree with the known three-loop results in the purely bosonic limit of the theory. We also find the exponents to satisfy the emergent super-scaling relations in the limit of a single-component fermion, order by order up to three loops. Finally, we apply the computed series for the exponents and their Pade approximants to several phase transitions of current interest: metal-insulator transitions of spin-1/2 and spinless fermions on the honeycomb lattice, emergent supersymmetric surface field theory in topological phases, as well as the disorder-induced quantum transition in Weyl semimetals. Comparison with the results of other analytical and numerical methods is discussed.
The QED$_3$-Gross-Neveu model is a (2+1)-dimensional U(1) gauge theory involving Dirac fermions and a critical real scalar field. This theory has recently been argued to represent a dual description of the deconfined quantum critical point between Neel and valence bond solid orders in frustrated quantum magnets. We study the critical behavior of the QED$_3$-Gross-Neveu model by means of an epsilon expansion around the upper critical space-time dimension of $D_c^+=4$ up to the three-loop order. Estimates for critical exponents in 2+1 dimensions are obtained by evaluating the different Pade approximants of their series expansion in epsilon. We find that these estimates, within the spread of the Pade approximants, satisfy a nontrivial scaling relation which follows from the emergent SO(5) symmetry implied by the duality conjecture. We also construct explicit evidence for the equivalence between the QED$_3$-Gross-Neveu model and a corresponding critical four-fermion gauge theory that was previously studied within the 1/N expansion in space-time dimensions 2<D<4.
The chiral QED$_3$--Gross-Neveu-Yukawa (QED$_3$-GNY) theory is a $2+1$-dimensional U(1) gauge theory with $N_f$ flavors of four-component Dirac fermions coupled to a scalar field. For $N_f=1$, the specific chiral Ising QED$_3$-GNY model has recently been conjectured to be dual to the deconfined quantum critical point that describes Neel--valence-bond-solid transition of frustrated quantum magnets on square lattice. We study the universal critical behaviors of the chiral QED$_3$-GNY model in $d=4-epsilon$ dimensions for an arbitrary $N_f$ . We calculate the boson anomalous dimensions, inverse correlation length exponent, as well as the scaling dimensions of nonsinglet fermion bilinear in the chiral QED$_3$-GNY model. The Pad$acute{e}$ estimates for the exponents are obtained in the chiral Ising-, XY- and Heisenberg-QED$_3$-GNY universality class respectively. We also establish the general condition of the supersymmetric criticality for the ungauged QED$_3$-GNY model. For the conjectured duality between chiral QED$_3$-GNY critical point and deconfined quantum critical point, we find the inverse correlation length exponent has a lower boundary $ u^{-1}>0.75$, beyond which the Ising-QED$_3$-GNY--$mathbb{C}$P$^1$ duality may hold.
The coupling between fermionic matter and gauge fields plays a fundamental role in our understanding of nature, while at the same time posing a challenging problem for theoretical modeling. In this situation, controlled information can be gained by combining different complementary approaches. Here, we study a confinement transition in a system of $N_f$ flavors of interacting Dirac fermions charged under a U(1) gauge field in 2+1 dimensions. Using Quantum Monte Carlo simulations, we investigate a lattice model that exhibits a continuous transition at zero temperature between a gapless deconfined phase, described by three-dimensional quantum electrodynamics, and a gapped confined phase, in which the system develops valence-bond-solid order. We argue that the quantum critical point is in the universality class of the QED$_3$-Gross-Neveu-XY model. We study this field theory within a $1/N_f$ expansion in fixed dimension as well as a renormalization group analysis in $4-epsilon$ space-time dimensions. The consistency between numerical and analytical results is revealed from large to intermediate flavor number.
We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in $4-epsilon$ dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order $mathcal{O}(epsilon^4)$. Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with $N=1/4$ and $N=1/2$ fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.