No Arabic abstract
Dirac and Weyl fermions appear as quasi-particle excitations in many different condensed-matter systems. They display various quantum transitions which represent unconventional universality classes related to the variants of the Gross-Neveu model. In this work we study the bosonized version of the standard Gross-Neveu model -- the Gross-Neveu-Yukawa theory -- at three-loop order, and compute critical exponents in $4-epsilon$ dimensions for general number of fermion flavors. Our results fully encompass the previously known two-loop calculations, and agree with the known three-loop results in the purely bosonic limit of the theory. We also find the exponents to satisfy the emergent super-scaling relations in the limit of a single-component fermion, order by order up to three loops. Finally, we apply the computed series for the exponents and their Pade approximants to several phase transitions of current interest: metal-insulator transitions of spin-1/2 and spinless fermions on the honeycomb lattice, emergent supersymmetric surface field theory in topological phases, as well as the disorder-induced quantum transition in Weyl semimetals. Comparison with the results of other analytical and numerical methods is discussed.
We study the universal critical properties of the QED$_3$-Gross-Neveu-Yukawa model with $N$ flavors of four-component Dirac fermions coupled to a real scalar order parameter at four-loop order in the $epsilon$ expansion below four dimensions. For $N=1$, the model is conjectured to be infrared dual to the $SU(2)$-symmetric noncompact $mathbb{C}$P$^1$ model, which describes the deconfined quantum critical point of the Neel-valence-bond-solid transition of spin-1/2 quantum antiferromagnets on the two-dimensional square lattice. For $N=2$, the model describes a quantum phase transition between an algebraic spin liquid and a chiral spin liquid in the spin-1/2 kagome antiferromagnet. For general $N$ we determine the order parameter anomalous dimension, the correlation length exponent, the stability critical exponent, as well as the scaling dimensions of $SU(N)$ singlet and adjoint fermion mass bilinears at the critical point. We use Pade approximants to obtain estimates of critical properties in 2+1 dimensions.
The QED$_3$-Gross-Neveu model is a (2+1)-dimensional U(1) gauge theory involving Dirac fermions and a critical real scalar field. This theory has recently been argued to represent a dual description of the deconfined quantum critical point between Neel and valence bond solid orders in frustrated quantum magnets. We study the critical behavior of the QED$_3$-Gross-Neveu model by means of an epsilon expansion around the upper critical space-time dimension of $D_c^+=4$ up to the three-loop order. Estimates for critical exponents in 2+1 dimensions are obtained by evaluating the different Pade approximants of their series expansion in epsilon. We find that these estimates, within the spread of the Pade approximants, satisfy a nontrivial scaling relation which follows from the emergent SO(5) symmetry implied by the duality conjecture. We also construct explicit evidence for the equivalence between the QED$_3$-Gross-Neveu model and a corresponding critical four-fermion gauge theory that was previously studied within the 1/N expansion in space-time dimensions 2<D<4.
The chiral QED$_3$--Gross-Neveu-Yukawa (QED$_3$-GNY) theory is a $2+1$-dimensional U(1) gauge theory with $N_f$ flavors of four-component Dirac fermions coupled to a scalar field. For $N_f=1$, the specific chiral Ising QED$_3$-GNY model has recently been conjectured to be dual to the deconfined quantum critical point that describes Neel--valence-bond-solid transition of frustrated quantum magnets on square lattice. We study the universal critical behaviors of the chiral QED$_3$-GNY model in $d=4-epsilon$ dimensions for an arbitrary $N_f$ . We calculate the boson anomalous dimensions, inverse correlation length exponent, as well as the scaling dimensions of nonsinglet fermion bilinear in the chiral QED$_3$-GNY model. The Pad$acute{e}$ estimates for the exponents are obtained in the chiral Ising-, XY- and Heisenberg-QED$_3$-GNY universality class respectively. We also establish the general condition of the supersymmetric criticality for the ungauged QED$_3$-GNY model. For the conjectured duality between chiral QED$_3$-GNY critical point and deconfined quantum critical point, we find the inverse correlation length exponent has a lower boundary $ u^{-1}>0.75$, beyond which the Ising-QED$_3$-GNY--$mathbb{C}$P$^1$ duality may hold.
An important yet largely unsolved problem in the statistical mechanics of disordered quantum systems is to understand how quenched disorder affects quantum phase transitions in systems of itinerant fermions. In the clean limit, continuous quantum phase transitions of the symmetry-breaking type in Dirac materials such as graphene and the surfaces of topological insulators are described by relativistic (2+1)-dimensional quantum field theories of the Gross-Neveu-Yukawa (GNY) type. We study the universal critical properties of the chiral Ising, XY, and Heisenberg GNY models perturbed by quenched random-mass disorder, both uncorrelated or with long-range power-law correlations. Using the replica method combined with a controlled triple epsilon expansion below four dimensions, we find a variety of new finite-randomness critical and multicritical points with nonzero Yukawa coupling between low-energy Dirac fields and bosonic order parameter fluctuations, and compute their universal critical exponents. Analyzing bifurcations of the renormalization-group flow, we find instances of the fixed-point annihilation scenario---continuously tuned by the power-law exponent of long-range disorder correlations and associated with an exponentially large crossover length---as well as the transcritical bifurcation and the supercritical Hopf bifurcation. The latter is accompanied by the birth of a stable limit cycle on the critical hypersurface, which represents the first instance of fermionic quantum criticality with emergent discrete scale invariance.
We study quantum critical behavior in three dimensional lattice Gross-Neveu models containing two massless Dirac fermions. We focus on two models with SU(2) flavor symmetry and either a $Z_2$ or a U(1) chiral symmetry. Both models could not be studied earlier due to sign problems. We use the fermion bag approach which is free of sign problems and compute critical exponents at the phase transitions. We estimate $ u = 0.83(1)$, $eta = 0.62(1)$, $eta_psi = 0.38(1)$ in the $Z_2$ and $ u = 0.849(8)$, $eta = 0.633(8)$, $eta_psi = 0.373(3)$ in the U(1) model.