Do you want to publish a course? Click here

Polariton-Enhanced Exciton Transport

65   0   0.0 ( 0 )
 Added by David Myers
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The transport distance of excitons in exciton-polariton systems has previously been assumed to be very small ($lesssim 1~mu$m). The sharp spatial profiles observed when generating polaritons by non-resonant optical excitation show that this assumption is generally true. In this paper, however, we show that the transport distances of excitons in two-dimensional planar cavity structures with even a slightly polaritonic character are much longer than expected ($approx 20~mu$m). Although this population of slightly polaritonic excitons is normally small compared to the total population of excitons, they can substantially outnumber the population of the polaritons at lower energies, leading to important implications for the tailoring of potential landscapes and the measurement of interactions between polaritons.



rate research

Read More

Recently a new type of system exhibiting spontaneous coherence has emerged -- the exciton-polariton condensate. Exciton-polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a superposition of an exciton and a cavity photon. Above a threshold density the polaritons macroscopically occupy the same quantum state, forming a condensate. The lifetime of the polaritons are typically comparable to or shorter than thermalization times, making them possess an inherently non-equilibrium nature. Nevertheless, they display many of the features that would be expected of equilibrium Bose-Einstein condensates (BECs). The non-equilibrium nature of the system raises fundamental questions of what it means for a system to be a BEC, and introduces new physics beyond that seen in other macroscopically coherent systems. In this review we focus upon several physical phenomena exhibited by exciton-polariton condensates. In particular we examine topics such as the difference between a polariton BEC, a polariton laser, and a photon laser, as well as physical phenomena such as superfluidity, vortex formation, BKT (Berezinskii-Kosterlitz-Thouless) and BCS (Bardeen-Cooper-Schrieffer) physics. We also discuss the physics and applications of engineered polariton structures.
A quantum simulator is a purposeful quantum machine that can address complex quantum problems in a controllable setting and an efficient manner. This chapter introduces a solid-state quantum simulator platform based on exciton-polaritons, which are hybrid light-matter quantum quasi-particles. We describe the physical realization of an exciton-polariton quantum simulator in semiconductor materials (hardware) and discuss a class of problems, which the exciton-polariton quantum simulators can address well (software). A current status of the experimental progress in building the quantum machine is reviewed, and potential applications are considered.
Exciton-polaritons are a coherent electron-hole-photon (e-h-p) system where condensation has been observed in semiconductor microcavities. In contrast to equilibrium Bose-Einstein condensation (BEC) for long lifetime systems, polariton condensates have a dynamical nonequilibrium feature owing to the similar physical structure that they have to semiconductor lasers. One of the distinguishing features of a condensate to a laser is the presence of strong coupling between the matter and photon fields. Irrespective of its equilibrium or nonequilibrium nature, exciton-polariton have been observed to maintain strong coupling. We show that by investigating high density regime of exciton-polariton condensates, the negative branch directly observed in photoluminescence. This is evidence that the present e-h-p system is still in the strong coupling regime, contrary to past results where the system reduced to standard lasing at high density.
We introduce the phenomenon of spiraling vortices in driven-dissipative (non-equilibrium) exciton-polariton condensates excited by a non-resonant pump beam. At suitable low pump intensities, these vortices are shown to spiral along circular trajectories whose diameter is inversely proportional to the effective mass of the polaritons, while the rotation period is mass independent. Both diameter and rotation period are inversely proportional to the pump intensity. Stable spiraling patterns in the form of complexes of multiple mutually-interacting vortices are also found. At elevated pump intensities, which create a stronger homogeneous background, we observe more complex vortex trajectories resembling Spirograph patterns.
Exciton-polaritons in semiconductor microcavities have advanced to become a model system for studying dynamical Bose-Einstein condensation, macroscopic coherence, many-body effects, nonclassical states of light and matter, and possibly quantum phase transitions in a solid state. Being low mass bosons, these light-matter quasiparticles can condense at comparably high temperatures up to 300K, while preserving fundamental properties such as coherence in space and time domain even when they are out of equilibrium with the environment. Although the presence of an in-plane polariton confinement potential is not strictly necessary in order to observe condensation of polaritons, engineering the polariton confinement is a key to controlling, shaping and directing the flow of polaritons. Prototype polariton-based optoelectronic devices rely on ultrafast photon-like velocities and strong nonlinearities, as well as on tailored confinement. Nanotechnology provides several pathways to achieving such a confinement, and the specific features and advantages of the different techniques are discussed in this paper. As hybrid exciton-photon quasiparticles, polaritons can be trapped via their excitonic as well as their photonic component, which leads to a wide choice of highly complementary techniques. Here we highlight the almost free choice of trapping geometries and depths of confinement that provides a powerful tool for control and manipulation of polariton systems both in semi-classical and quantum domain. Furthermore, the possibility to observe effects of polariton blockade, Mott insulator physics, and population of higher-order bands in sophisticated lattice potentials is discussed. The observation of such effects will signify the opportunity for the realization of novel polaritonic non-classical light sources and quantum simulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا