Do you want to publish a course? Click here

Indefinite-mean Pareto photon distribution from amplified quantum noise

125   0   0.0 ( 0 )
 Added by Mathieu Manceau
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Extreme events appear in many physics phenomena, whenever the probability distribution has a heavy tail, differing very much from the equilibrium one. Most unusual are the cases of power-law (Pareto) probability distributions. Among their many manifestations in physics, from rogue waves in the ocean to Levy flights in random walks, Pareto dependences can follow very different power laws. For some outstanding cases the power exponents are less than 2, leading to indefinite mean values, let alone higher moments. Here we present the first evidence of indefinite-mean Pareto distribution of photon numbers at the output of nonlinear effects pumped by parametrically amplified vacuum noise, known as bright squeezed vacuum (BSV). We observe a Pareto distribution with power exponent 1.31 when BSV is used as a pump for supercontinuum generation, and other heavy-tailed distributions (however with definite moments) when it pumps optical harmonics generation. Unlike in other fields, we can flexibly control the Pareto exponent by changing the experimental parameters. This extremely fluctuating light is interesting for ghost imaging and quantum thermodynamics as a resource to produce more efficiently non-equilibrium states by single-photon subtraction, the latter we demonstrate experimentally.



rate research

Read More

Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.
The security of quantum communication using a weak coherent source requires an accurate knowledge of the sources mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to deviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD, we model both a strong attack using technology possible in principle, and a realistic attack bounded by todays technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantiques commercial QKD system Clavis2. We scrutinize this implementation for security problems, and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.
We present a fully quantum mechanical treatment of optically rephased photon echoes. These echoes exhibit noise due to amplified spontaneous emission, however this noise can be seen as a consequence of the entanglement between the atoms and the output light. With a rephasing pulse one can get an echo of the amplified spontaneous emission, leading to light with nonclassical correlations at points separated in time, which is of interest in the context of building wide bandwidth quantum repeaters. We also suggest a wideband version of DLCZ protocol based on the same ideas.
100 - Jie Yang , Fan Fan , Jinlu Liu 2020
The amplified spontaneous emission (ASE) noise has been extensively studied and employed to build quantum random number generators (QRNGs). While the previous relative works mainly focus on the realization and verification of the QRNG system, the comprehensive physical model and randomness quantification for the general detection of the ASE noise are still incomplete, which is essential for the quantitative security analysis. In this paper, a systematical physical model for the emission, detection and acquisition of the ASE noise with added electronic noise is developed and verified, based on which the numerical simulations are performed under various setups and the simulation results all significantly fit well with the corresponding experimental data. Then, a randomness quantification method and the corresponding experimentally verifiable approach are proposed and validated, which quantifies the randomness purely resulted from the quantum process and improves the security analysis for the QRNG based on the detection of the ASE noise. The physical model and the randomness quantification method proposed in this paper are of significant feasibility and applicable for the QRNG system with randomness originating from the detection of the photon number with arbitrary distributions.
The fundamental dynamics of quantum particles is neutral with respect to the arrow of time. And yet, our experiments are not: we observe quantum systems evolving from the past to the future, but not the other way round. A fundamental question is whether it is in principle possible to probe a quantum dynamics in the backward direction, or in more general combinations of the forward and the backward direction. To answer this question, we characterise all possible time-reversals that satisfy four natural requirements and we identify the largest set of quantum processes that can in principle be probed in both time directions. Then, we show that quantum theory is compatible with the existence of a new kind of operations where the arrow of time is indefinite. We explicitly construct one such operation, called the quantum time flip, and show that it cannot be realised by any quantum circuit with a definite direction of time. The quantum time flip offers an advantage in a game where a referee challenges a player to identify a hidden relation between two gates, and can be experimentally simulated with photonic systems, shedding light on the information-processing capabilities of exotic scenarios in which the arrow of time is in a quantum superposition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا