Do you want to publish a course? Click here

A reevaluation of the 2MASS zero points using CALSPEC spectrophotometry complemented with Gaia Data Release 2 parallaxes

55   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

CONTEXT. 2MASS is the reference survey in the NIR part of the spectrum given its whole-sky coverage, large dynamic range, and proven calibration uniformity. However, previous studies disagree in the value of the zero points (ZPs) for its three bands JHK at the hundredth of a magnitude level. The disagreement should become more noticeable now that Gaia provides whole-sky optical photometry calibrated below that level. AIMS. We want to establish the value of the 2MASS ZPs based on NICMOS/HST spectrophotometry of the CALSPEC standard stars and test it with the help of Gaia DR2 parallaxes. METHODS. We have computed the synthetic JHK photometry for a sample of stars using the HST CALSPEC spectroscopic standards and compared it with their 2MASS magnitudes to evaluate the ZPs. We have tested our results by analysing a sample of FGK dwarfs with excellent 2MASS photometry and accurate Gaia DR2 parallaxes.} RESULTS. The Vega ZPs for 2MASS J, H, and K are found to be -0.025$pm$0.005 mag, 0.004$pm$0.005 mag, and -0.015$pm$0.005 mag, respectively. The analysis of the FGK sample indicates that the new ZPs are more accurate than previous ones.



rate research

Read More

CONTEXT: The second Gaia data release (DR2) took place on April 2018. DR2 included photometry for more than 1.3 10^9 sources in G, BP, and RP. Even though Gaia DR2 photometry is very precise, there are currently three alternative definitions of the sensitivity curves that show significative differences. AIMS: The aim of this paper is to improve the quality of the input calibration data to produce new compatible definitions of the three bands and to identify the reasons for the discrepancies between previous definitions. METHODS: We have searched the HST archive for STIS spectra with G430L+G750L data obtained with wide apertures and combined them with the CALSPEC library to produce a high quality SED library of 122 stars with a broad range of colors, including three very red stars. We have used it to compute new sensitivity curves for G, BP, and RP using a functional analytical formalism. RESULTS: The new curves are significantly better than the two previous attempts, REV and WEI. For G we confirm the existence of a systematic bias in magnitude and correct a color term present in REV. For BP we confirm the need to define two magnitude ranges with different sensitivity curves and measure the cut between them at G = 10.87 with a significant increase in precision. The new curves also fit the data better than either REV or WEI. For RP we obtain a sensitivity curve that better fits the STIS spectra and we find that the differences with previous attempts reside in a systematic effect between ground-based and HST spectral libraries. Additional evidence from color-color diagrams indicate that the new sensitivity curve is more accurate. Nevertheless, there is still room for improvement in the accuracy of the sensitivity curves because of the current dearth of good-quality red calibrators: adding more to the sample should be a priority before Gaia data release 3 takes place.
The second Gaia data release is based on 22 months of mission data with an average of 0.9 billion individual CCD observations per day. A data volume of this size and granularity requires a robust and reliable but still flexible system to achieve the demanding accuracy and precision constraints that Gaia is capable of delivering. The internal Gaia photometric system was initialised using an iterative process that is solely based on Gaia data. A set of calibrations was derived for the entire Gaia DR2 baseline and then used to produce the final mean source photometry. The photometric catalogue contains 2.5 billion sources comprised of three different grades depending on the availability of colour information and the procedure used to calibrate them: 1.5 billion gold, 144 million silver, and 0.9 billion bronze. These figures reflect the results of the photometric processing; the content of the data release will be different due to the validation and data quality filters applied during the catalogue preparation. The photometric processing pipeline, PhotPipe, implements all the processing and calibration workflows in terms of Map/Reduce jobs based on the Hadoop platform. This is the first example of a processing system for a large astrophysical survey project to make use of these technologies. The improvements in the generation of the integrated G-band fluxes, in the attitude modelling, in the cross-matching, and and in the identification of spurious detections led to a much cleaner input stream for the photometric processing. This, combined with the improvements in the definition of the internal photometric system and calibration flow, produced high-quality photometry. Hadoop proved to be an excellent platform choice for the implementation of PhotPipe in terms of overall performance, scalability, downtime, and manpower required for operations and maintenance.
Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these results performed within the astrometry task. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G<14 mag) sources, 0.1 mas at G=17 mag, and 0.7 mas at G=20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas/yr, respectively. The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas/yr. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas/yr in proper motion are seen on small (<1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.
The source detection sensitivity of Gaia is reduced near sources. To characterise this contrast sensitivity is important for understanding the completeness of the Gaia data products, in particular when evaluating source confusion in less well resolved surveys, such as in photometric monitoring for transits. Here, we statistically evaluate the catalog source density to determine the Gaia Data Release 2 source detection sensitivity as a function of angular separation and brightness ratio from a bright source. The contrast sensitivity from 0.4 arcsec out to 12 arcsec ranges in DG = 0-14 mag. We find the derived contrast sensitivity to be robust with respect to target brightness, colour, source density, and Gaia scan coverage.
Aims. The Radial Velocity Spectrometer (RVS) on board the ESA satellite mission Gaia has no calibration device. Therefore, the radial velocity zero point needs to be calibrated with stars that are proved to be stable at a level of 300 m/s during the Gaia observations. Methods. We compiled a dataset of ~71000 radial velocity measurements from five high-resolution spectrographs. A catalogue of 4813 stars was built by combining these individual measurements. The zero point was established using asteroids. Results. The resulting catalogue has seven observations per star on average on a typical time baseline of six years, with a median standard deviation of 15 m/s. A subset of the most stable stars fulfilling the RVS requirements was used to establish the radial velocity zero point provided in Gaia Data Release 2. The stars that were not used for calibration are used to validate the RVS data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا