No Arabic abstract
Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these results performed within the astrometry task. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G<14 mag) sources, 0.1 mas at G=17 mag, and 0.7 mas at G=20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas/yr, respectively. The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas/yr. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas/yr in proper motion are seen on small (<1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.
Gaia Early Data Release 3 (Gaia EDR3) contains results for 1.812 billion sources in the magnitude range G = 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase. We describe the input data, the models, and the processing used for the astrometric content of Gaia EDR3, as well as the validation of these results performed within the astrometry task. The processing broadly followed the same procedures as for Gaia DR2, but with significant improvements to the modelling of observations. For the first time in the Gaia data processing, colour-dependent calibrations of the line- and point-spread functions have been used for sources with well-determined colours from DR2. In the astrometric processing these sources obtained five-parameter solutions, whereas other sources were processed using a special calibration that allowed a pseudocolour to be estimated as the sixth astrometric parameter. Compared with DR2, the astrometric calibration models have been extended, and the spin-related distortion model includes a self-consistent determination of basic-angle variations, improving the global parallax zero point. Gaia EDR3 gives full astrometric data (positions at epoch J2016.0, parallaxes, and proper motions) for 1.468 billion sources (585 million with five-parameter solutions, 882 million with six parameters), and mean positions at J2016.0 for an additional 344 million. Solutions with five parameters are generally more accurate than six-parameter solutions, and are available for 93% of the sources brighter than G = 17 mag. The median uncertainty in parallax and annual proper motion is 0.02-0.03 mas at magnitude G = 9 to 14, and around 0.5 mas at G = 20. Extensive characterisation of the statistical properties of the solutions is provided, including the estimated angular power spectrum of parallax bias from the quasars.
The second Gaia data release is based on 22 months of mission data with an average of 0.9 billion individual CCD observations per day. A data volume of this size and granularity requires a robust and reliable but still flexible system to achieve the demanding accuracy and precision constraints that Gaia is capable of delivering. The internal Gaia photometric system was initialised using an iterative process that is solely based on Gaia data. A set of calibrations was derived for the entire Gaia DR2 baseline and then used to produce the final mean source photometry. The photometric catalogue contains 2.5 billion sources comprised of three different grades depending on the availability of colour information and the procedure used to calibrate them: 1.5 billion gold, 144 million silver, and 0.9 billion bronze. These figures reflect the results of the photometric processing; the content of the data release will be different due to the validation and data quality filters applied during the catalogue preparation. The photometric processing pipeline, PhotPipe, implements all the processing and calibration workflows in terms of Map/Reduce jobs based on the Hadoop platform. This is the first example of a processing system for a large astrophysical survey project to make use of these technologies. The improvements in the generation of the integrated G-band fluxes, in the attitude modelling, in the cross-matching, and and in the identification of spurious detections led to a much cleaner input stream for the photometric processing. This, combined with the improvements in the definition of the internal photometric system and calibration flow, produced high-quality photometry. Hadoop proved to be an excellent platform choice for the implementation of PhotPipe in terms of overall performance, scalability, downtime, and manpower required for operations and maintenance.
At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. We summarize Gaia DR1 and provide illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Gaia DR1 consists of: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set,consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ~3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas/yr for the proper motions. A systematic component of ~0.3 mas should be added to the parallax uncertainties. For the subset of ~94000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas/yr. For the secondary astrometric data set, the typical uncertainty of the positions is ~10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ~0.03 mag over the magnitude range 5 to 20.7. Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data.
The source detection sensitivity of Gaia is reduced near sources. To characterise this contrast sensitivity is important for understanding the completeness of the Gaia data products, in particular when evaluating source confusion in less well resolved surveys, such as in photometric monitoring for transits. Here, we statistically evaluate the catalog source density to determine the Gaia Data Release 2 source detection sensitivity as a function of angular separation and brightness ratio from a bright source. The contrast sensitivity from 0.4 arcsec out to 12 arcsec ranges in DG = 0-14 mag. We find the derived contrast sensitivity to be robust with respect to target brightness, colour, source density, and Gaia scan coverage.
Aims. We describe the photometric content of the second data release of the Gaia project (Gaia DR2) and its validation along with the quality of the data. Methods. The validation was mainly carried out using an internal analysis of the photometry. External comparisons were also made, but were limited by the precision and systematics that may be present in the external catalogues used. Results. In addition to the photometric quality assessment, we present the best estimates of the three photometric passbands. Various colour-colour transformations are also derived to enable the users to convert between the Gaia and commonly used passbands. Conclusions. The internal analysis of the data shows that the photometric calibrations can reach a precision as low as 2 mmag on individual CCD measurements. Other tests show that systematic effects are present in the data at the 10 mmag level.