No Arabic abstract
Understanding depairing effects in a hybrid-superconducting interface utilizing high spin-orbit materials such as topological insulators or 1D semiconducting nanowires is becoming an important research topic in the study of proximity-induced superconductivity. Experimentally, proximity-induced superconductivity is found to suppress at much lower magnetic fields compared to the superconducting layer without a good understanding of its cause. Here, we provide a phenomenological tool to characterize different pair-breaking mechanisms, the ones that break or preserve time reversal symmetry, and show how they affect the differential tunneling conductance response. Importantly, we probe the properties of the SC layer at the hybrid interface and observe conductance peak pinning at zero bias in a larger field range with eventual signs of weak peak splitting. Further, the effect of varying the spin-orbit scattering and the Lande g-factor in tuning the conductance peaks show interesting trends.
We report on structural, DC, X-ray and neutron studies of hybrid superconducting mesa-heterostructures with a cuprate antiferromagnetic interlayer Ca1-xSrxCuO2 (CSCO). The upper electrode was bilayer Nb/Au superconductor and copper oxide superconductor YBa2Cu3O7 (YBCO) was the bottom electrode. It was experimentally shown that during the epitaxial growth of the two films YBCO and CSCO a charge carrier doping takes place in the CSCO interlayer with a depth about 20 nm. The conductivity of the doped part of CSCO layer is close to the metal type, while the reference CSCO film, deposited directly on NdGaO3 substrate, behaves as Mott insulator with the hopping conductivity. The interface Au/CSCO is clearly seen on bright-field image of the cross-section of heterostructure and gives the main contribution to the total resistance of mesa-heterostructure.
We performed Raman experiments on superconducting ${rm Bi_2 Sr_2 (Ca_{1-x} Y_x) Cu_2 O_{8+delta}}$ (Bi-2212) and ${rm YBa_{2} Cu_{3}O_{6+x}}$ (Y-123) single crystals. These results in combination with earlier ones enable us to analyze systematically the spectral features in the doping range $0.07 le p le 0.23$. In $B_{2g}$ ($xy$) symmetry we find universal spectra and the maximal gap energy $Delta_0$ to follow the superconducting transition temperature $T_c$. The $B_{1g}$ ($x^2-y^2$) spectra in Bi-2212 show an anomalous increase of the intensity towards overdoping, indicating that the corresponding energy scale is neither related to the pairing energy nor to the pseudogap, but possibly stems from a symmetry breaking transition at the onset point of superconductivity at $p_{rm sc2} simeq 0.27$.
Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to not change the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation effciency $eta$, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger $eta$ - a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in $eta$ may be measurable.
We study the proximity effect between the fully-gapped region of a topological insulator in direct contact with an s-wave superconducting electrode (STI) and the surrounding topological insulator flake (TI) in Au/Bi$_{1.5}$Sb$_{0.5}$Te$_{1.7}$Se$_{1.3}$/Nb devices. The conductance spectra of the devices show the presence of a large induced gap in the STI as well as the induction of superconducting correlations in the normal part of the TI on the order of the Thouless energy. The shape of the conductance modulation around zero-energy varies between devices and can be explained by existing theory of s-wave-induced superconductivity in SNN (S is a superconductor, N a superconducting proximized material and N is a normal metal) devices. All the conductance spectra show a conductance dip at the induced gap of the STI.
The combination of superconductivity and the helical spin-momentum locking at the surface state of a topological insulator (TI) has been predicted to give rise to p-wave superconductivity and Majorana bound states. The superconductivity can be induced by the proximity effect of a an s-wave superconductor (S) into the TI. To probe the superconducting correlations inside the TI, dI/dV spectroscopy has been performed across such S-TI interfaces. Both the alloyed Bi$_{1.5}$Sb$_{0.5}$Te$_{1.7}$Se$_{1.3}$ and the stoichiometric BiSbTeSe$_2$ have been used as three dimensional TI. In the case of Bi$_{1.5}$Sb$_{0.5}$Te$_{1.7}$Se$_{1.3}$, the presence of disorder induced electron-electron interactions can give rise to an additional zero-bias resistance peak. For the stoichiometric BiSbTeSe$_2$ with less disorder, tunnel barriers were employed in order to enhance the signal from the interface. The general observations in the spectra of a large variety of samples are conductance dips at the induced gap voltage, combined with an increased sub-gap conductance, consistent with p-wave predictions. The induced gap voltage is typically smaller than the gap of the Nb superconducting electrode, especially in the presence of an intentional tunnel barrier. Additional uncovered spectroscopic features are oscillations that are linearly spaced in energy, as well as a possible second order parameter component.