Do you want to publish a course? Click here

Active engineering of four-wave mixing spectral entanglement in hollow-core fibers

238   0   0.0 ( 0 )
 Added by Martin Cordier
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate theoretically and experimentally a high level of control of the four-wave mixing process in an inert gas filled inhibited-coupling guiding hollow-core photonic crystal fiber in order to generate photon pairs. The specific multiple-branch dispersion profile in such fibers allows both entangled and separable bi-photon states to be produced. By controlling the choice of gas, its pressure and the fiber length, we experimentally generate various joint spectral intensity profiles in a stimulated regime that is transferable to the spontaneous regime. The generated profiles cover both spectrally separable and entangled bi-photons and feature frequency tuning over 17 THz, demonstrating the large dynamic control offered by such a photon pair source.



rate research

Read More

Using four-wave mixing in a hot atomic vapor, we generate a pair of entangled twin beams in the microsecond pulsed regime near the D1 line of $^{85}$Rb, making it compatible with commonly used quantum memory techniques. The beams are generated in the bright and vacuum-squeezed regimes, requiring two separate methods of analysis, without and with local oscillators, respectively. We report a noise reduction of up to $3.8pm 0.2$ dB below the standard quantum limit in the pulsed regime and a level of entanglement that violates an Einstein--Podolsky--Rosen inequality.
The capacity of optical communication channels can be increased by space division multiplexing in structured optical fibers. Radial core optical fibers allows for the propagation of twisted light--eigenmodes of orbital angular momentum, which have attracted considerable attention for high-dimensional quantum information. Here we study the generation of entangled photons that are tailor-made for coupling into ring core optical fibers. We show that the coupling of photon pairs produced by parametric down-conversion can be increased by close to a factor of three by pumping the non-linear crystal with a perfect vortex mode with orbital angular momentum $ell$, rather than a gaussian mode. Moreover, the two-photon orbital angular momentum spectrum has a nearly constant shape. This provides an interesting scenario for quantum state engineering, as pumping the crystal with a superposition of perfect vortex modes can be used in conjunction with the mode filtering properties of the ring core fiber to produce simple and interesting quantum states.
By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an increase of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure.
We report on a highly-efficient experimental scheme for the generation of deep-ultraviolet ultrashort light pulses using four-wave mixing in gas-filled kagome-style photonic crystal fiber. By pumping with ultrashort, few $mu$J, pulses centered at 400 nm, we generate an idler pulse at 266 nm, and amplify a seeded signal at 800 nm. We achieve remarkably high pump-to-idler energy conversion efficiencies of up to 38%. Although the pump and seed pulse durations are ~100 fs, the generated ultraviolet spectral bandwidths support sub-15 fs pulses. These can be further extended to support few-cycle pulses. Four-wave mixing in gas-filled hollow-core fibres can be scaled to high average powers and different spectral regions such as the vacuum ultraviolet (100-200 nm).
Four-wave mixing in atomic vapor allows for the generation of multi-spatial-mode states of light containing many pairs of two-mode entangled vacuum beams. This in principle can be used to send independent secure keys to multiple parties simultaneously using a single light source. In our experiment, we demonstrate this spatial multiplexing of information by selecting three independent pairs of entangled modes and performing continuous-variable measurements to verify the correlations between entangled partners. In this way, we generate three independent pairs of correlated random bit streams that could be used as secure keys. We then demonstrate a classical four-party secret sharing scheme as an example for how this spatially multiplexed source could be used.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا