Do you want to publish a course? Click here

Multi-channel entanglement distribution using spatial multiplexing from four-wave mixing in atomic vapor

239   0   0.0 ( 0 )
 Added by Travis Horrom
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Four-wave mixing in atomic vapor allows for the generation of multi-spatial-mode states of light containing many pairs of two-mode entangled vacuum beams. This in principle can be used to send independent secure keys to multiple parties simultaneously using a single light source. In our experiment, we demonstrate this spatial multiplexing of information by selecting three independent pairs of entangled modes and performing continuous-variable measurements to verify the correlations between entangled partners. In this way, we generate three independent pairs of correlated random bit streams that could be used as secure keys. We then demonstrate a classical four-party secret sharing scheme as an example for how this spatially multiplexed source could be used.



rate research

Read More

We have observed the ultraslow propagation of matched pulses in nondegenerate four-wave mixing in a hot atomic vapor. Probe pulses as short as 70 ns can be delayed by a tunable time of up to 40 ns with little broadening or distortion. During the propagation, a probe pulse is amplified and generates a conjugate pulse which is faster and separates from the probe pulse before getting locked to it at a fixed delay. The precise timing of this process allows us to determine the key coefficients of the susceptibility tensor. The presence of gain in this system makes this system very interesting in the context of all-optical information processing.
Using four-wave mixing in a hot atomic vapor, we generate a pair of entangled twin beams in the microsecond pulsed regime near the D1 line of $^{85}$Rb, making it compatible with commonly used quantum memory techniques. The beams are generated in the bright and vacuum-squeezed regimes, requiring two separate methods of analysis, without and with local oscillators, respectively. We report a noise reduction of up to $3.8pm 0.2$ dB below the standard quantum limit in the pulsed regime and a level of entanglement that violates an Einstein--Podolsky--Rosen inequality.
Quantum states of light can improve imaging whenever the image quality and resolution are limited by the quantum noise of the illumination. In the case of a bright illumination, quantum enhancement is obtained for a light field composed of many squeezed transverse modes. A possible realization of such a multi-spatial-mode squeezed state is a field which contains a transverse plane in which the local electric field displays reduced quantum fluctuations at all locations, on any one quadrature. Using nondegenerate four-wave mixing in a hot vapor, we have generated a bichromatic multi-spatial-mode squeezed state and showed that it exhibits localised quadrature squeezing at any point of its transverse profile, in regions much smaller than its size. We observe 75 independently squeezed regions. This confirms the potential of this technique for producing illumination suitable for practical quantum imaging.
Entangled multi-spatial-mode fields have interesting applications in quantum information, such as parallel quantum information protocols, quantum computing, and quantum imaging. We study the use of a nondegenerate four-wave mixing process in rubidium vapor at 795 nm to demonstrate generation of quantum-entangled images. Owing to the lack of an optical resonator cavity, the four-wave mixing scheme generates inherently multi-spatial-mode output fields. We have verified the presence of entanglement between the multi-mode beams by analyzing the amplitude difference and the phase sum noise using a dual homodyne detection scheme, measuring more than 4 dB of squeezing in both cases. This paper will discuss the quantum properties of amplifiers based on four-wave-mixing, along with the multi mode properties of such devices.
We study quantum intensity correlations produced using four-wave mixing in a room-temperature rubidium vapor cell. An extensive study of the effect of the various parameters allows us to observe very large amounts of non classical correlations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا