Do you want to publish a course? Click here

Pupil Plane Phase Apodization

108   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phase apodization coronagraphs are implemented in a pupil plane to create a dark hole in the science camera focal plane. They are successfully created as Apodizing Phase Plates (APPs) using classical optical manufacturing, and as vector-APPs using liquid-crystal patterning with essentially achromatic performance. This type of coronagraph currently delivers excellent broadband contrast ($sim$10$^{-5}$) at small angular separations (few $lambda/D$) at ground-based telescopes, owing to their insensitivity to tip/tilt errors.



rate research

Read More

The basic outline of a pupil plane WaveFront Sensor is reviewed taking into account that the source to be sensed could be different from an unresolved source, i.e. it is extended, and that it could deploy also in a 3D fashion, enough to exceed the fields depth of the observing telescope. Under these conditions it is pointed out that the features of the reference are not invariant for different position on the pupil and it is shown that the INGOT WFS is the equivalent of the Pyramid for a Laser Guide Star. Under these conditions one can imagine to use a Dark WFS approach to improve the SNR of such a WFS, or to use a corrected upward beam in order to achieve a better use of the LGS photons with respect to an ideal Shack-Hartmann WFS.
113 - M. NDiaye , K. Dohlen , S. Cuevas 2011
For direct imaging of exoplanets, a stellar coronagraph helps to remove the image of an observed bright star by attenuating the diffraction effects caused by the telescope aperture of diameter D. The Dual Zone Phase Mask (DZPM) coronagraph constitutes a promising concept since it theoretically offers a small inner working angle (IWA sim lambda_0/D), good achromaticity and high starlight rejection, typically reaching a 1e6 contrast at 5 lambda_0/D from the star over a spectral bandwidth Deltalambda/lambda_0 of 25% (similar to H-band). This last value proves to be encouraging for broadband imaging of young and warm Jupiter-like planets. Contrast levels higher than 1e6 are however required for the observation of older and/or less massive companions over a finite spectral bandwidth. An achromatization improvement of the DZPM coronagraph is therefore mandatory to reach such performance. In its design, the DZPM coronagraph uses a grey (or achromatic) apodization. We propose to replace it by a colored apodization to increase the performance of this coronagraphic system over a large spectral range. This innovative concept, called Colored Apodizer Phase Mask (CAPM) coronagraph, is defined with some design parameters optimized to reach the best contrast in the exoplanet search area. Once this done, we study the performance of the CAPM coronagraph in the presence of different errors to evaluate the sensitivity of our concept. A 2.5 mag contrast gain is estimated from the performance provided by the CAPM coronagraph with respect to that of the DZPM coronagraph. A 2.2e-8 intensity level at 5 lambda_0/D separation is then theoretically achieved with the CAPM coronagraph in the presence of a clear circular aperture and a 25% bandwidth. In addition, our studies show that our concept is less sensitive to low than high-order aberrations for a given value of rms wavefront errors.
A set of pupil apodization functions for use with a vortex coronagraph on telescopes with obscured apertures is presented. We show analytically that pupil amplitudes given by real-valued Zernike polynomials offer ideal on-axis starlight cancellation when applied to unobscured circular apertures. The charge of the vortex phase element must be a nonzero even integer, greater than the sum of the degree and the absolute value of its azimuthal order of the Zernike polynomial. Zero-valued lines and points of Zernike polynomials, or linear combinations thereof, can be matched to obstructions in the pupils of ground-based telescopes to improve the contrast achieved by a vortex coronagraph. This approach works well in the presence of a central obscuration and radial support structures. We analyze the contrast, off-axis throughput, and post-coronagraph point spread functions of an apodized vortex coronagraph designed for the European Extremely Large Telescope (E-ELT). This technique offers very good performance on apertures with large obscuring support structures similar to those on future 30-40m class ground-based telescopes.
We present methods for optimizing pupil and focal plane optical elements that improve the performance of vortex coronagraphs on telescopes with obstructed or segmented apertures. Phase-only and complex masks are designed for the entrance pupil, focal plane, and the plane of the Lyot stop. Optimal masks are obtained using both analytical and numerical methods. The latter makes use of an iterative error reduction algorithm to calculate correcting optics that mitigate unwanted diffraction from aperture obstructions. We analyze the achieved performance in terms of starlight suppression, contrast, off-axis image quality, and chromatic dependence. Manufacturing considerations and sensitivity to aberrations are also discussed. This work provides a path to joint optimization of multiple coronagraph planes to maximize sensitivity to exoplanets and other faint companions.
Exoplanet imaging and spectroscopy are now routinely achieved by dedicated instruments on large ground-based observatories (e.g. Gemini/GPI, VLT/SPHERE, or Subaru/SCExAO). In addition to extreme adaptive optics (ExAO) and post-processing methods, these facilities make use of the most advanced coronagraphs to suppress light of an observed star and enable the observation of circumstellar environments. The Apodized Pupil Lyot Coronagraph (APLC) is one of the leading coronagraphic baseline in the current generation of instruments. This concept combines a pupil apodization, an opaque focal plane mask (FPM), and a Lyot stop. APLC can be optimized for a range of applications and designs exist for on-axis segmented aperture telescopes at $10^{10}$ contrast in broadband light. In this communication, we propose novel designs to push the limits of this concept further by modifying the nature of the FPM from its standard opaque mask to a smaller size occulting spot surrounded by circular phase shifting zones. We present the formalism of this new concept which solutions find two possible applications: 1) upgrades for the current generation of ExAO coronagraphs since these solutions remain compatible with the existing designs and will provide better inner working angle, contrast and throughput, and 2) coronagraphy at $10^{10}$ contrast for future flagship missions such as LUVOIR, with the goal to increase the throughput of the existing designs for the observation of Earth-like planets around nearby stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا