Do you want to publish a course? Click here

Evidence of hot and cold spots on the Fermi surface of LiFeAs

129   0   0.0 ( 0 )
 Added by J. Fink
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Angle-resolved photoemission spectroscopy (ARPES) is used to study the energy and momentum dependence of the inelastic scattering rates and the mass renormalization of charge carriers in LiFeAs at several high symmetry points in the Brillouin zone. A strong and linear-in-energy scattering rate is observed for sections of the Fermi surface having predominantly Fe $3d_{xy/yz}$ orbital character on the inner hole and on electron pockets. We assign them to hot spots with marginal Fermi liquid character inducing high antiferromagnetic and pairing susceptibilities. The outer hole pocket, with Fe $3d_{xy}$ orbital character, has a reduced but still linear in energy scattering rate. Finally, we assign sections on the middle hole pockets with Fe $3d_{xz,yz}$ orbital character and on the electron pockets with Fe $3d_{xy}$ orbital character to cold spots because there we observe a quadratic-in-energy scattering rate with Fermi-liquid behavior. These cold spots prevail the transport properties. Our results indicate a strong $it{momentum}$ dependence of the scattering rates. We also have indications that the scattering rates in correlated systems are fundamentally different from those in non-correlated materials because in the former the Pauli principle is not operative. We compare our results for the scattering rates with combined density functional plus dynamical mean-field theory calculations. The work provides a generic microscopic understanding of macroscopic properties of multiorbital unconventional superconductors.

rate research

Read More

Spatially inhomogeneous electronic states are expected to be key ingredients for the emergence of superconducting phases in quantum materials hosting charge-density-waves (CDWs). Prototypical materials are transition-metal dichalcogenides (TMDCs) and among them, 1$T$-TiSe$_2$ exhibiting intertwined CDW and superconducting states under Cu intercalation, pressure or electrical gating. Although it has been recently proposed that the emergence of superconductivity relates to CDW fluctuations and the development of spatial inhomogeneities in the CDW order, the fundamental mechanism underlying such a phase separation (PS) is still missing. Using angle-resolved photoemission spectroscopy and variable-temperature scanning tunneling microscopy, we report on the phase diagram of the CDW in 1$T$-TiSe$_2$ as a function of Ti self-doping, an overlooked degree of freedom inducing CDW texturing. We find an intrinsic tendency towards electronic PS in the vicinity of Fermi surface (FS) hot spots, i.e. locations with band crossings close to, but not at the Fermi level. We therefore demonstrate an intimate relationship between the FS topology and the emergence of spatially textured electronic phases which is expected to be generalizable to many doped CDW compounds.
65 - N.L. Saini 1998
Here we report an asymmetric suppresion of spectral weight at the Fermi surface around the M points using angle resolved photoemission spectroscopy. The results provide direct evidence for diagonal stripes in the Bi2212 superconductors.
This paper presents a frequentist analysis of the hot and cold spots of the cosmic microwave background data collected by the Wilkinson Microwave Anisotropy Probe (WMAP). We compare the WMAP temperature statistics of extrema (number of extrema, mean excursion, variance, skewness and kurtosis of the excursion) to Monte-Carlo simulations. We find that, on average, the local maxima (high temperatures in the anisotropy) are too cold and the local minima are too warm. In order to quantify this claim we describe a two-sided statistical hypothesis test which we advocate for other investigations of the Gaussianity hypothesis. Using this test we reject the isotropic Gaussian hypothesis at more than 99% confidence in a well-defined way. Our claims are based only on regions that are outside the most conservative WMAP foreground mask. We perform our test separately on maxima and minima, and on the north and south ecliptic and Galactic hemispheres and reject Gaussianity at above 95% confidence for almost all tests of the mean excursions. The same test also shows the variance of the maxima and minima to be low in the ecliptic north (99% confidence), but consistent in the south; this effect is not as pronounced in the Galactic north and south hemispheres.
LiFeAs is unique among the broad family of FeAs-based superconductors, because it is superconducting with a rather large $T_csimeq 18$ K under ambient conditions although it is a stoichiometric compound. We studied the electrical transport on a high-quality single crystal. The resistivity shows quadratic temperature dependence at low temperature giving evidence for strong electron-electron scattering and a tendency towards saturation around room temperature. The Hall constant is negative and changes with temperature, what most probably arises from a van Hove singularity close to the Fermi energy in one of the hole-like bands. Using band structure calculations based on angular resolved photoemission spectra we are able to reproduce all the basic features of both the resistivity as well as the Hall effect data.
We measured the optical conductivity of superconducting LiFeAs. In the superconducting state, the formation of the condensate leads to a spectral-weight loss and yields a penetration depth of 225 nm. No sharp signature of the superconducting gap is observed. This suggests that the system is likely in the clean limit. A Drude-Lorentz parametrization of the data in the normal state reveals a quasiparticle scattering rate supportive of spin fluctuations and proximity to a quantum critical point.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا