Do you want to publish a course? Click here

Domain Robust Feature Extraction for Rapid Low Resource ASR Development

244   0   0.0 ( 0 )
 Added by Siddharth Dalmia
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Developing a practical speech recognizer for a low resource language is challenging, not only because of the (potentially unknown) properties of the language, but also because test data may not be from the same domain as the available training data. In this paper, we focus on the latter challenge, i.e. domain mismatch, for systems trained using a sequence-based criterion. We demonstrate the effectiveness of using a pre-trained English recognizer, which is robust to such mismatched conditions, as a domain normalizing feature extractor on a low resource language. In our example, we use Turkish Conversational Speech and Broadcast News data. This enables rapid development of speech recognizers for new languages which can easily adapt to any domain. Testing in various cross-domain scenarios, we achieve relative improvements of around 25% in phoneme error rate, with improvements being around 50% for some domains.



rate research

Read More

Sequence-to-sequence (seq2seq) models are competitive with hybrid models for automatic speech recognition (ASR) tasks when large amounts of training data are available. However, data sparsity and domain adaptation are more problematic for seq2seq models than their hybrid counterparts. We examine corpora of five languages from the IARPA MATERIAL program where the transcribed data is conversational telephone speech (CTS) and evaluation data is broadcast news (BN). We show that there is a sizable initial gap in such a data condition between hybrid and seq2seq models, and the hybrid model is able to further improve through the use of additional language model (LM) data. We use an additional set of untranscribed data primarily in the BN domain for semisupervised training. In semisupervised training, a seed model trained on transcribed data generates hypothesized transcripts for unlabeled domain-matched data for further training. By using a hybrid model with an expanded language model for pseudotranscription, we are able to improve our seq2seq model from an average word error rate (WER) of 66.7% across all five languages to 29.0% WER. While this puts the seq2seq model at a competitive operating point, hybrid models are still able to use additional LM data to maintain an advantage.
Language understanding in speech-based systems have attracted much attention in recent years with the growing demand for voice interface applications. However, the robustness of natural language understanding (NLU) systems to errors introduced by automatic speech recognition (ASR) is under-examined. %To facilitate the research on ASR-robust general language understanding, In this paper, we propose ASR-GLUE benchmark, a new collection of 6 different NLU tasks for evaluating the performance of models under ASR error across 3 different levels of background noise and 6 speakers with various voice characteristics. Based on the proposed benchmark, we systematically investigate the effect of ASR error on NLU tasks in terms of noise intensity, error type and speaker variants. We further purpose two ways, correction-based method and data augmentation-based method to improve robustness of the NLU systems. Extensive experimental results and analysises show that the proposed methods are effective to some extent, but still far from human performance, demonstrating that NLU under ASR error is still very challenging and requires further research.
Automatic speech recognition (ASR) systems in the medical domain that focus on transcribing clinical dictations and doctor-patient conversations often pose many challenges due to the complexity of the domain. ASR output typically undergoes automatic punctuation to enable users to speak naturally, without having to vocalise awkward and explicit punctuation commands, such as period, add comma or exclamation point, while truecasing enhances user readability and improves the performance of downstream NLP tasks. This paper proposes a conditional joint modeling framework for prediction of punctuation and truecasing using pretrained masked language models such as BERT, BioBERT and RoBERTa. We also present techniques for domain and task specific adaptation by fine-tuning masked language models with medical domain data. Finally, we improve the robustness of the model against common errors made in ASR by performing data augmentation. Experiments performed on dictation and conversational style corpora show that our proposed model achieves ~5% absolute improvement on ground truth text and ~10% improvement on ASR outputs over baseline models under F1 metric.
While low resource speech recognition has attracted a lot of attention from the speech community, there are a few tools available to facilitate low resource speech collection. In this work, we present SANTLR: Speech Annotation Toolkit for Low Resource Languages. It is a web-based toolkit which allows researchers to easily collect and annotate a corpus of speech in a low resource language. Annotators may use this toolkit for two purposes: transcription or recording. In transcription, annotators would transcribe audio files provided by the researchers; in recording, annotators would record their voice by reading provided texts. We highlight two properties of this toolkit. First, SANTLR has a very user-friendly User Interface (UI). Both researchers and annotators may use this simple web interface to interact. There is no requirement for the annotators to have any expertise in audio or text processing. The toolkit would handle all preprocessing and postprocessing steps. Second, we employ a multi-step ranking mechanism facilitate the annotation process. In particular, the toolkit would give higher priority to utterances which are easier to annotate and are more beneficial to achieving the goal of the annotation, e.g. quickly training an acoustic model.
398 - Yubei Xiao , Ke Gong , Pan Zhou 2020
Low-resource automatic speech recognition (ASR) is challenging, as the low-resource target language data cannot well train an ASR model. To solve this issue, meta-learning formulates ASR for each source language into many small ASR tasks and meta-learns a model initialization on all tasks from different source languages to access fast adaptation on unseen target languages. However, for different source languages, the quantity and difficulty vary greatly because of their different data scales and diverse phonological systems, which leads to task-quantity and task-difficulty imbalance issues and thus a failure of multilingual meta-learning ASR (MML-ASR). In this work, we solve this problem by developing a novel adversarial meta sampling (AMS) approach to improve MML-ASR. When sampling tasks in MML-ASR, AMS adaptively determines the task sampling probability for each source language. Specifically, for each source language, if the query loss is large, it means that its tasks are not well sampled to train ASR model in terms of its quantity and difficulty and thus should be sampled more frequently for extra learning. Inspired by this fact, we feed the historical task query loss of all source language domain into a network to learn a task sampling policy for adversarially increasing the current query loss of MML-ASR. Thus, the learnt task sampling policy can master the learning situation of each language and thus predicts good task sampling probability for each language for more effective learning. Finally, experiment results on two multilingual datasets show significant performance improvement when applying our AMS on MML-ASR, and also demonstrate the applicability of AMS to other low-resource speech tasks and transfer learning ASR approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا