We prove an analog of the Ado theorem - the existence of a finite-dimensional faithful representation - for a certain kind of finite-dimensional nilpotent Hom-Lie algebras.
In this paper, we introduce the notion of a derivation of a Hom-Lie algebra and construct the corresponding strict Hom-Lie 2-algebra, which is called the derivation Hom-Lie 2-algebra. As applications, we study non-abelian extensions of Hom-Lie algebras. We show that iso- morphism classes of diagonal non-abelian extensions of a Hom-Lie algebra g by a Hom-Lie algebra h are in one-to-one correspondence with homotopy classes of morphisms from g to the derivation Hom-Lie 2-algebra DER(h).
We prove a version of the Poincare-Birkhoff-Witt Theorem for profinite pronilpotent Lie algebras in which their symmetric and universal enveloping algebras are replaced with appropriate formal analogues and discuss some immediate corollaries of this result.
After endowing with a 3-Lie-Rinehart structure on Hom 3-Lie algebras, we obtain a class of special Hom 3-Lie algebras, which have close relationships with representations of commutative associative algebras. We provide a special class of Hom 3-Lie-Rinehart algebras, called split regular Hom 3-Lie-Rinehart algebras, and we then characterize their structures by means of root systems and weight systems associated to a splitting Cartan subalgebra.
We introduce the notion of 3-Hom-Lie-Rinehart algebra and systematically describe a cohomology complex by considering coefficient modules. Furthermore, we consider extensions of a 3-Hom-Lie-Rinehart algebra and characterize the first cohomology space in terms of the group of automorphisms of an $A$-split abelian extension and the equivalence classes of $A$-split abelian extensions. Finally, we study formal deformations of 3-Hom-Lie-Rinehart algebras.
The classification of complex of real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example the nilpotent Lie algebras are classified only up to the dimension 7. Moreover, to recognize a given Lie algebra in a classification list is not so easy. In this work we propose a different approach to this problem. We determine families for some fixed invariants, the classification follows by a deformation process or contraction process. We focus on the case of 2 and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology of this type of algebras and the algebras which are rigid regarding this cohomology. Other $p$-step nilpotent Lie algebras are obtained by contraction of the rigid ones.