Do you want to publish a course? Click here

A Survey of the Usages of Deep Learning in Natural Language Processing

185   0   0.0 ( 0 )
 Added by Jugal Kalita
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.



rate research

Read More

140 - Ming Liu , Stella Ho , Mengqi Wang 2021
Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.
99 - Hai Wang 2020
Deep learning has become the workhorse for a wide range of natural language processing applications. But much of the success of deep learning relies on annotated examples. Annotation is time-consuming and expensive to produce at scale. Here we are interested in methods for reducing the required quantity of annotated data -- by making the learning methods more knowledge efficient so as to make them more applicable in low annotation (low resource) settings. There are various classical approaches to making the models more knowledge efficient such as multi-task learning, transfer learning, weakly supervised and unsupervised learning etc. This thesis focuses on adapting such classical methods to modern deep learning models and algorithms. This thesis describes four works aimed at making machine learning models more knowledge efficient. First, we propose a knowledge rich deep learning model (KRDL) as a unifying learning framework for incorporating prior knowledge into deep models. In particular, we apply KRDL built on Markov logic networks to denoise weak supervision. Second, we apply a KRDL model to assist the machine reading models to find the correct evidence sentences that can support their decision. Third, we investigate the knowledge transfer techniques in multilingual setting, where we proposed a method that can improve pre-trained multilingual BERT based on the bilingual dictionary. Fourth, we present an episodic memory network for language modelling, in which we encode the large external knowledge for the pre-trained GPT.
92 - Wenpeng Yin 2020
Few-shot natural language processing (NLP) refers to NLP tasks that are accompanied with merely a handful of labeled examples. This is a real-world challenge that an AI system must learn to handle. Usually we rely on collecting more auxiliary information or developing a more efficient learning algorithm. However, the general gradient-based optimization in high capacity models, if training from scratch, requires many parameter-updating steps over a large number of labeled examples to perform well (Snell et al., 2017). If the target task itself cannot provide more information, how about collecting more tasks equipped with rich annotations to help the model learning? The goal of meta-learning is to train a model on a variety of tasks with rich annotations, such that it can solve a new task using only a few labeled samples. The key idea is to train the models initial parameters such that the model has maximal performance on a new task after the parameters have been updated through zero or a couple of gradient steps. There are already some surveys for meta-learning, such as (Vilalta and Drissi, 2002; Vanschoren, 2018; Hospedales et al., 2020). Nevertheless, this paper focuses on NLP domain, especially few-shot applications. We try to provide clearer definitions, progress summary and some common datasets of applying meta-learning to few-shot NLP.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
As the use of deep learning techniques has grown across various fields over the past decade, complaints about the opaqueness of the black-box models have increased, resulting in an increased focus on transparency in deep learning models. This work investigates various methods to improve the interpretability of deep neural networks for natural language processing (NLP) tasks, including machine translation and sentiment analysis. We provide a comprehensive discussion on the definition of the term textit{interpretability} and its various aspects at the beginning of this work. The methods collected and summarised in this survey are only associated with local interpretation and are divided into three categories: 1) explaining the models predictions through related input features; 2) explaining through natural language explanation; 3) probing the hidden states of models and word representations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا