Do you want to publish a course? Click here

Random stochastic matrices from classical compact Lie groups and symmetric spaces

166   0   0.0 ( 0 )
 Added by Marcel Novaes
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider random stochastic matrices $M$ with elements given by $M_{ij}=|U_{ij}|^2$, with $U$ being uniformly distributed on one of the classical compact Lie groups or associated symmetric spaces. We observe numerically that, for large dimensions, the spectral statistics of $M$, discarding the Perron-Frobenius eigenvalue $1$, are similar to those of the Gaussian Orthogonal ensemble for symmetric matrices and to those of the real Ginibre ensemble for non-symmetric matrices. Using Weingarten functions, we compute some spectral statistics that corroborate this universality. We also establish connections with some difficult enumerative problems involving permutations.

rate research

Read More

Recursive algebraic construction of two infinite families of polynomials in $n$ variables is proposed as a uniform method applicable to every semisimple Lie group of rank $n$. Its result recognizes Chebyshev polynomials of the first and second kind as the special case of the simple group of type $A_1$. The obtained not Laurent-type polynomials are proved to be equivalent to the partial cases of the Macdonald symmetric polynomials. Basic relation between the polynomials and their properties follow from the corresponding properties of the orbit functions, namely the orthogonality and discretization. Recurrence relations are shown for the Lie groups of types $A_1$, $A_2$, $A_3$, $C_2$, $C_3$, $G_2$, and $B_3$ together with lowest polynomials.
Using the proposed by us thinning approach to describe extreme matrices, we find an explicit exponentiation formula linking classical extreme laws of Frechet, Gumbel and Weibull given by Fisher-Tippet-Gnedenko classification and free extreme laws of free Frechet, free Gumbel and free Weibull by Ben Arous and Voiculescu [1]. We also develop an extreme random matrix formalism, in which refined questions about extreme matrices can be answered. In particular, we demonstrate explicit calculations for several more or less known random matrix ensembles, providing examples of all three free extreme laws. Finally, we present an exact mapping, showing the equivalence of free extreme laws to the Peak-Over-Threshold method in classical probability.
104 - J. R. Ipsen , M. Kieburg 2013
We study the joint probability density of the eigenvalues of a product of rectangular real, complex or quaternion random matrices in a unified way. The random matrices are distributed according to arbitrary probability densities, whose only restriction is the invariance under left and right multiplication by orthogonal, unitary or unitary symplectic matrices, respectively. We show that a product of rectangular matrices is statistically equivalent to a product of square matrices. Hereby we prove a weak commutation relation of the random matrices at finite matrix sizes, which previously have been discussed for infinite matrix size. Moreover we derive the joint probability densities of the eigenvalues. To illustrate our results we apply them to a product of random matrices drawn from Ginibre ensembles and Jacobi ensembles as well as a mixed version thereof. For these weights we show that the product of complex random matrices yield a determinantal point process, while the real and quaternion matrix ensembles correspond to Pfaffian point processes. Our results are visualized by numerical simulations. Furthermore, we present an application to a transport on a closed, disordered chain coupled to a particle bath.
240 - Xiang Ni , Chengming Bai 2010
A special symplectic Lie group is a triple $(G,omega, abla)$ such that $G$ is a finite-dimensional real Lie group and $omega$ is a left invariant symplectic form on $G$ which is parallel with respect to a left invariant affine structure $ abla$. In this paper starting from a special symplectic Lie group we show how to ``deform the standard Lie group structure on the (co)tangent bundle through the left invariant affine structure $ abla$ such that the resulting Lie group admits families of left invariant hypersymplectic structures and thus becomes a hypersymplectic Lie group. We consider the affine cotangent extension problem and then introduce notions of post-affine structure and post-left-symmetric algebra which is the underlying algebraic structure of a special symplectic Lie algebra. Furthermore, we give a kind of double extensions of special symplectic Lie groups in terms of post-left-symmetric algebras.
150 - Patrik L. Ferrari 2013
In these lecture we explain why limiting distribution function, like the Tracy-Widom distribution, or limit processes, like the Airy_2 process, arise both in random matrices and interacting particle systems. The link is through a common mathematical structure on an interlacing structure, also known as Gelfand-Tsetlin pattern, that appears for specific models in both fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا