Do you want to publish a course? Click here

Operator-GENERIC Formulation of Thermodynamics of Irreversible Processes

94   0   0.0 ( 0 )
 Added by Arbi Moses Badlyan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Metriplectic systems are state space formulations that have become well-known under the acronym GENERIC. In this work we present a GENERIC based state space formulation in an operator setting that encodes a weak-formulation of the field equations describing the dynamics of a homogeneous mixture of compressible heat-conducting Newtonian fluids consisting of reactive constituents. We discuss the mathematical model of the fluid mixture formulated in the framework of continuum thermodynamics. The fluid mixture is considered an open thermodynamic system that moves free of external body forces. As closure relations we use the linear constitutive equations of the phenomenological theory known as Thermodynamics of Irreversible Processes (TIP). The phenomenological coefficients of these linear constitutive equations satisfy the Onsager-Casimir reciprocal relations. We present the state space representation of the fluid mixture, formulated in the extended GENERIC framework for open systems, specified by a symmetric, mixture related dissipation bracket and a mixture related Poisson-bracket for which we prove the Jacobi-identity.



rate research

Read More

We propose a variational formulation for the nonequilibrium thermodynamics of discrete open systems, i.e., discrete systems which can exchange mass and heat with the exterior. Our approach is based on a general variational formulation for systems with time-dependent nonlinear nonholonomic constraints and time-dependent Lagrangian. For discrete open systems, the~time-dependent nonlinear constraint is associated with the rate of internal entropy production of the system. We show that this constraint on the solution curve systematically yields a constraint on the variations to be used in the action functional. The proposed variational formulation is intrinsic and provides the same structure for a wide class of discrete open systems. We illustrate our theory by presenting examples of open systems experiencing mechanical interactions, as well as internal diffusion, internal heat transfer, and their cross-effects. Our approach yields a systematic way to derive the complete evolution equations for the open systems, including the expression of the internal entropy production of the system, independently on its complexity. It might be especially useful for the study of the nonequilibrium thermodynamics of biophysical systems.
71 - Liangrong Peng , Liu Hong 2021
The main purpose of this review is to summarize the recent advances of the Conservation-Dissipation Formalism (CDF), a new way for constructing both thermodynamically compatible and mathematically stable and well-posed models for irreversible processes. The contents include but are not restricted to the CDFs physical motivations, mathematical foundations, formulations of several classical models in mathematical physics from master equations and Fokker-Planck equations to Boltzmann equations and quasi-linear Maxwell equations, as well as novel applications in the fields of non-Fourier heat conduction, non-Newtonian viscoelastic fluids, wave propagation/transportation in geophysics and neural science, soft matter physics, textit{etc.} Connections with other popular theories in the field of non-equilibrium thermodynamics are examined too.
We present a variational formulation for the Navier-Stokes-Fourier system based on a free energy Lagrangian. This formulation is a systematic infinite dimensional extension of the variational approach to the thermodynamics of discrete systems using the free energy, which complements the Lagrangian variational formulation using the internal energy developed in cite{GBYo2016b} as one employs temperature, rather than entropy, as an independent variable. The variational derivation is first expressed in the material (or Lagrangian) representation, from which the spatial (or Eulerian) representation is deduced. The variational framework is intrinsically written in a differential-geometric form that allows the treatment of the Navier-Stokes-Fourier system on Riemannian manifolds.
We describe a method, based on hard contact topology, of showing the existence of semi-infinite trajectories of contact Hamiltonian flows which start on one Legendrian submanifold and asymptotically converge to another Legendrian submanifold. We discuss a mathematical model of non-equilibrium thermodynamics where such trajectories play a role of relaxation processes, and illustrate our results in the case of the Glauber dynamics for the mean field Ising model.
It is known that a one-dimensional quantum particle is localized when subjected to an arbitrarily weak random potential. It is conjectured that localization also occurs for an arbitrarily weak potential generated from the nonlinear skew-shift dynamics: $v_n=2cosleft(binom{n}{2}omega +ny+xright)$ with $omega$ an irrational number. Recently, Han, Schlag, and the second author derived a finite-size criterion in the case when $omega$ is the golden mean, which allows to derive the positivity of the infinite-volume Lyapunov exponent from three conditions imposed at a fixed, finite scale. Here we numerically verify the two conditions among these that are amenable to computer calculations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا