Do you want to publish a course? Click here

Using control synthesis to generate corner cases: A case study on autonomous driving

358   0   0.0 ( 0 )
 Added by Necmiye Ozay
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This paper employs correct-by-construction control synthesis, in particular controlled invariant set computations, for falsification. Our hypothesis is that if it is possible to compute a large enough controlled invariant set either for the actual system model or some simplification of the system model, interesting corner cases for other control designs can be generated by sampling initial conditions from the boundary of this controlled invariant set. Moreover, if falsifying trajectories for a given control design can be found through such sampling, then the controlled invariant set can be used as a supervisor to ensure safe operation of the control design under consideration. In addition to interesting initial conditions, which are mostly related to safety violations in transients, we use solutions from a dual game, a reachability game for the safety specification, to find falsifying inputs. We also propose optimization-based heuristics for input generation for cases when the state is outside the winning set of the dual game. To demonstrate the proposed ideas, we consider case studies from basic autonomous driving functionality, in particular, adaptive cruise control and lane keeping. We show how the proposed technique can be used to find interesting falsifying trajectories for classical control designs like proportional controllers, proportional integral controllers and model predictive controllers, as well as an open source real-world autonomous driving package.



rate research

Read More

Deep Neural Networks (DNNs) are rapidly being adopted by the automotive industry, due to their impressive performance in tasks that are essential for autonomous driving. Object segmentation is one such task: its aim is to precisely locate boundaries of objects and classify the identified objects, helping autonomous cars to recognise the road environment and the traffic situation. Not only is this task safety critical, but developing a DNN based object segmentation module presents a set of challenges that are significantly different from traditional development of safety critical software. The development process in use consists of multiple iterations of data collection, labelling, training, and evaluation. Among these stages, training and evaluation are computation intensive while data collection and labelling are manual labour intensive. This paper shows how development of DNN based object segmentation can be improved by exploiting the correlation between Surprise Adequacy (SA) and model performance. The correlation allows us to predict model performance for inputs without manually labelling them. This, in turn, enables understanding of model performance, more guided data collection, and informed decisions about further training. In our industrial case study the technique allows cost savings of up to 50% with negligible evaluation inaccuracy. Furthermore, engineers can trade off cost savings versus the tolerable level of inaccuracy depending on different development phases and scenarios.
How to explore corner cases as efficiently and thoroughly as possible has long been one of the top concerns in the context of deep reinforcement learning (DeepRL) autonomous driving. Training with simulated data is less costly and dangerous than utilizing real-world data, but the inconsistency of parameter distribution and the incorrect system modeling in simulators always lead to an inevitable Sim2real gap, which probably accounts for the underperformance in novel, anomalous and risky cases that simulators can hardly generate. Domain Randomization(DR) is a methodology that can bridge this gap with little or no real-world data. Consequently, in this research, an adversarial model is put forward to robustify DeepRL-based autonomous vehicles trained in simulation to gradually surfacing harder events, so that the models could readily transfer to the real world.
The electric power system is a cyber-physical system with power flow in the physical system and information flow in the cyber. Simulation is crucial to understanding the dynamics and control of electric power systems yet the underlying communication system has historically been ignored in these studies. This paper aims at meeting the increasing needs to simulate the operations of a real power system including the physical system, the energy management system, the communication system, and the emerging wide-area measurement-based controls. This paper proposes a cyber-physical testbed design and implementation for verifying and demonstrating wide-area control methods based on streaming telemetry and phasor measurement unit data. The proposed decoupled architecture is composed of a differential algebraic equation based physical system simulator, a software-defined network, a scripting language environment for prototyping an EMS system and a control system, all of which are integrated over industry-standard communication protocols. The proposed testbed is implemented using open-source software packages managed by a Python dispatcher. Finally, demonstrations are presented to show two wide-area measurement-based controls - system separation control and hierarchical voltage control, in the implemented testbed.
120 - Matthew Tsao , Ramon Iglesias , 2018
This paper presents a stochastic, model predictive control (MPC) algorithm that leverages short-term probabilistic forecasts for dispatching and rebalancing Autonomous Mobility-on-Demand systems (AMoD, i.e. fleets of self-driving vehicles). We first present the core stochastic optimization problem in terms of a time-expanded network flow model. Then, to ameliorate its tractability, we present two key relaxations. First, we replace the original stochastic problem with a Sample Average Approximation (SAA), and characterize the performance guarantees. Second, we separate the controller into two separate parts to address the task of assigning vehicles to the outstanding customers separate from that of rebalancing. This enables the problem to be solved as two totally unimodular linear programs, and thus easily scalable to large problem sizes. Finally, we test the proposed algorithm in two scenarios based on real data and show that it outperforms prior state-of-the-art algorithms. In particular, in a simulation using customer data from DiDi Chuxing, the algorithm presented here exhibits a 62.3 percent reduction in customer waiting time compared to state of the art non-stochastic algorithms.
Since regular expressions (abbrev. regexes) are difficult to understand and compose, automatically generating regexes has been an important research problem. This paper introduces TransRegex, for automatically constructing regexes from both natural language descriptions and examples. To the best of our knowledge, TransRegex is the first to treat the NLP-and-example-based regex synthesis problem as the problem of NLP-based synthesis with regex repair. For this purpose, we present novel algorithms for both NLP-based synthesis and regex repair. We evaluate TransRegex with ten relevant state-of-the-art tools on three publicly available datasets. The evaluation results demonstrate that the accuracy of our TransRegex is 17.4%, 35.8% and 38.9% higher than that of NLP-based approaches on the three datasets, respectively. Furthermore, TransRegex can achieve higher accuracy than the state-of-the-art multi-modal techniques with 10% to 30% higher accuracy on all three datasets. The evaluation results also indicate TransRegex utilizing natural language and examples in a more effective way.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا