Do you want to publish a course? Click here

Detecting and Summarizing GUI Changes in Evolving Mobile Apps

62   0   0.0 ( 0 )
 Added by Kevin Moran P
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Mobile applications have become a popular software development domain in recent years due in part to a large user base, capable hardware, and accessible platforms. However, mobile developers also face unique challenges, including pressure for frequent releases to keep pace with rapid platform evolution, hardware iteration, and user feedback. Due to this rapid pace of evolution, developers need automated support for documenting the changes made to their apps in order to aid in program comprehension. One of the more challenging types of changes to document in mobile apps are those made to the graphical user interface (GUI) due to its abstract, pixel-based representation. In this paper, we present a fully automated approach, called GCAT, for detecting and summarizing GUI changes during the evolution of mobile apps. GCAT leverages computer vision techniques and natural language generation to accurately and concisely summarize changes made to the GUI of a mobile app between successive commits or releases. We evaluate the performance of our approach in terms of its precision and recall in detecting GUI changes compared to developer specified changes, and investigate the utility of the generated change reports in a controlled user study. Our results indicate that GCAT is capable of accurately detecting and classifying GUI changes - outperforming developers - while providing useful documentation.



rate research

Read More

The process of developing a mobile application typically starts with the ideation and conceptualization of its user interface. This concept is then translated into a set of mock-ups to help determine how well the user interface embodies the intended features of the app. After the creation of mock-ups developers then translate it into an app that runs in a mobile device. In this paper we propose an approach, called GUIGLE, that aims to facilitate the process of conceptualizing the user interface of an app through GUI search. GUIGLE indexes GUI images and metadata extracted using automated dynamic analysis on a large corpus of apps extracted from Google Play. To perform a search, our approach uses information from text displayed on a screen, user interface components, the app name, and screen color palettes to retrieve relevant screens given a query. Furthermore, we provide a lightweight query language that allows for intuitive search of screens. We evaluate GUIGLE with real users and found that, on average, 68.8% of returned screens were relevant to the specified query. Additionally, users found the various different features of GUIGLE useful, indicating that our search engine provides an intuitive user experience. Finally, users agree that the information presented by GUIGLE is useful in conceptualizing the design of new screens for applications.
Crowdsourced testing, as a distinct testing paradigm, has attracted much attention in software testing, especially in mobile application (app) testing field. Compared with in-house testing, crowdsourced testing outperforms because it utilize the diverse testing environments of different crowdworkers faced with the mobile testing fragmentation problem. However, crowdsourced testing also brings some problem. The crowdworkers involved are with different expertise, and they are not professional testers. Therefore, the reports they may submit are numerous and with uneven quality. App developers have to distinguish high-quality reports from low-quality ones to help the bug revealing and fixing. Some crowdworkers would submit inconsistent test reports, which means the textual descriptions are not focusing on the attached bug occurring screenshots. Such reports cause the waste on both time and human resources of app developing and testing. To solve such a problem, we propose ReCoDe in this paper, which is designed to detect the consistency of crowdsourced test reports via deep image-and-text fusion understanding. First, according to a pre-conducted survey, ReCoDe classifies the crowdsourced test reports into 10 categories, which covers the vast majority of reported problems in the test reports. Then, for each category of bugs, we have distinct processing models. The models have a deep fusion understanding on both image information and textual descriptions. We also have conducted an experiment to evaluate ReCoDe, and the results show the effectiveness of ReCoDe to detect consistency crowdsourced test reports.
XML configuration files are widely used in Android to define an apps user interface and essential runtime information such as system permissions. As Android evolves, it might introduce functional changes in the configuration environment, thus causing compatibility issues that manifest as inconsistent app behaviors at different API levels. Such issues can often induce software crashes and inconsistent look-and-feel when running at specific Androi
86 - Daniel Kraus 2018
ReTest is a novel testing tool for Java applications with a graphical user interface (GUI), combining monkey testing and difference testing. Since this combination sidesteps the oracle problem, it enables the generation of GUI-based regression tests. ReTest makes use of evolutionary computing (EC), particularly a genetic algorithm (GA), to optimize these tests towards code coverage. While this is indeed a desirable goal in terms of software testing and potentially finds many bugs, it lacks one major ingredient: human behavior. Consequently, human testers often find the results less reasonable and difficult to interpret. This thesis proposes a new approach to improve the initial population of the GA with the aid of machine learning (ML), forming an ML-technique enhanced-EC (MLEC) algorithm. In order to do so, existing tests are exploited to extract information on how human testers use the given GUI. The obtained data is then utilized to train an artificial neural network (ANN), which ranks the available GUI actions respectively their underlying GUI components at runtime---reducing the gap between manually created and automatically generated regression tests. Although the approach is implemented on top of ReTest, it can be easily used to guide any form of monkey testing. The results show that with only little training data, the ANN is able to reach an accuracy of 82% and the resulting tests represent an improvement without reducing the overall code coverage and performance significantly.
Context: Visual GUI testing (VGT) is referred to as the latest generation GUI-based testing. It is a tool-driven technique, which uses image recognition for interacting with and asserting the behavior of the system under test. Motivated by the industrial need of a large Turkish software and systems company providing solutions in the areas of defense and IT sector, an action-research project was recently initiated to implement VGT in several teams and projects in the company. Objective: To address the above needs, we planned and carried out an empirical investigation with the goal of assessing VGT using two tools (Sikuli and JAutomate). The purpose was to determine a suitable approach and tool for VGT of a given project (software product) in the company, increase the know-how in the companys test teams. Method: Using an action-research case-study design, we investigated the use of VGT in the studied organization. Specifically, using the two selected VGT tools, we conducted a quantitative and a qualitative evaluation of VGT. Results: By assessing the list of Challenges, Problems and Limitations (CPL), proposed in previous work, in the context of our empirical study, we found that test-tool- and SUT-related CPLs were quite comparable to a previous empirical study, e.g., the synchronization between SUT and test tools were not always robust and there were failures in test tools image recognition features. When assessing the types of test maintenance activities, when executing the automated test cases on ne
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا