No Arabic abstract
ReTest is a novel testing tool for Java applications with a graphical user interface (GUI), combining monkey testing and difference testing. Since this combination sidesteps the oracle problem, it enables the generation of GUI-based regression tests. ReTest makes use of evolutionary computing (EC), particularly a genetic algorithm (GA), to optimize these tests towards code coverage. While this is indeed a desirable goal in terms of software testing and potentially finds many bugs, it lacks one major ingredient: human behavior. Consequently, human testers often find the results less reasonable and difficult to interpret. This thesis proposes a new approach to improve the initial population of the GA with the aid of machine learning (ML), forming an ML-technique enhanced-EC (MLEC) algorithm. In order to do so, existing tests are exploited to extract information on how human testers use the given GUI. The obtained data is then utilized to train an artificial neural network (ANN), which ranks the available GUI actions respectively their underlying GUI components at runtime---reducing the gap between manually created and automatically generated regression tests. Although the approach is implemented on top of ReTest, it can be easily used to guide any form of monkey testing. The results show that with only little training data, the ANN is able to reach an accuracy of 82% and the resulting tests represent an improvement without reducing the overall code coverage and performance significantly.
Machine translation has wide applications in daily life. In mission-critical applications such as translating official documents, incorrect translation can have unpleasant or sometimes catastrophic consequences. This motivates recent research on testing methodologies for machine translation systems. Existing methodologies mostly rely on metamorphic relations designed at the textual level (e.g., Levenshtein distance) or syntactic level (e.g., the distance between grammar structures) to determine the correctness of translation results. However, these metamorphic relations do not consider whether the original and translated sentences have the same meaning (i.e., Semantic similarity). Therefore, in this paper, we propose SemMT, an automatic testing approach for machine translation systems based on semantic similarity checking. SemMT applies round-trip translation and measures the semantic similarity between the original and translated sentences. Our insight is that the semantics expressed by the logic and numeric constraint in sentences can be captured using regular expressions (or deterministic finite automata) where efficient equivalence/similarity checking algorithms are available. Leveraging the insight, we propose three semantic similarity metrics and implement them in SemMT. The experiment result reveals SemMT can achieve higher effectiveness compared with state-of-the-art works, achieving an increase of 21% and 23% on accuracy and F-Score, respectively. We also explore potential improvements that can be achieved when proper combinations of metrics are adopted. Finally, we discuss a solution to locate the suspicious trip in round-trip translation, which may shed lights on further exploration.
Context: Visual GUI testing (VGT) is referred to as the latest generation GUI-based testing. It is a tool-driven technique, which uses image recognition for interacting with and asserting the behavior of the system under test. Motivated by the industrial need of a large Turkish software and systems company providing solutions in the areas of defense and IT sector, an action-research project was recently initiated to implement VGT in several teams and projects in the company. Objective: To address the above needs, we planned and carried out an empirical investigation with the goal of assessing VGT using two tools (Sikuli and JAutomate). The purpose was to determine a suitable approach and tool for VGT of a given project (software product) in the company, increase the know-how in the companys test teams. Method: Using an action-research case-study design, we investigated the use of VGT in the studied organization. Specifically, using the two selected VGT tools, we conducted a quantitative and a qualitative evaluation of VGT. Results: By assessing the list of Challenges, Problems and Limitations (CPL), proposed in previous work, in the context of our empirical study, we found that test-tool- and SUT-related CPLs were quite comparable to a previous empirical study, e.g., the synchronization between SUT and test tools were not always robust and there were failures in test tools image recognition features. When assessing the types of test maintenance activities, when executing the automated test cases on ne
Mutation testing is a well-established technique for assessing a test suites quality by injecting artificial faults into production code. In recent years, mutation testing has been extended to machine learning (ML) systems, and deep learning (DL) in particular; researchers have proposed approaches, tools, and statistically sound heuristics to determine whether mutants in DL systems are killed or not. However, as we will argue in this work, questions can be raised to what extent currently used mutation testing techniques in DL are actually in line with the classical interpretation of mutation testing. We observe that ML model development resembles a test-driven development (TDD) process, in which a training algorithm (`programmer) generates a model (program) that fits the data points (test data) to labels (implicit assertions), up to a certain threshold. However, considering proposed mutation testing techniques for ML systems under this TDD metaphor, in current approaches, the distinction between production and test code is blurry, and the realism of mutation operators can be challenged. We also consider the fundamental hypotheses underlying classical mutation testing: the competent programmer hypothesis and coupling effect hypothesis. As we will illustrate, these hypotheses do not trivially translate to ML system development, and more conscious and explicit scoping and concept mapping will be needed to truly draw parallels. Based on our observations, we propose several action points for better alignment of mutation testing techniques for ML with paradigms and vocabularies of classical mutation testing.
In recent years, we observe an increasing amount of software with machine learning components being deployed. This poses the question of quality assurance for such components: how can we validate whether specified requirements are fulfilled by a machine learned software? Current testing and verification approaches either focus on a single requirement (e.g., fairness) or specialize on a single type of machine learning model (e.g., neural networks). In this paper, we propose property-driven testing of machine learning models. Our approach MLCheck encompasses (1) a language for property specification, and (2) a technique for systematic test case generation. The specification language is comparable to property-based testing languages. Test case generation employs advanced verification technology for a systematic, property-dependent construction of test suites, without additional user-supplied generator functions. We evaluate MLCheck using requirements and data sets from three different application areas (software discrimination, learning on knowledge graphs and security). Our evaluation shows that despite its generality MLCheck can even outperform specialised testing approaches while having a comparable runtime.
Test generation at the graphical user interface (GUI) level has proven to be an effective method to reveal faults. When doing so, a test generator has to repeatably decide what action to execute given the current state of the system under test (SUT). This problem of action selection usually involves random choice, which is often referred to as monkey testing. Some approaches leverage other techniques to improve the overall effectiveness, but only a few try to create human-like actions---or even entire action sequences. We have built a novel session-based recommender system that can guide test generation. This allows us to mimic past user behavior, reaching states that require complex interactions. We present preliminary results from an empirical study, where we use GitHub as the SUT. These results show that recommender systems appear to be well-suited for action selection, and that the approach can significantly contribute to the improvement of GUI-based test generation.