Do you want to publish a course? Click here

Investigation of antineutrino spectral anomaly with updated nuclear database

50   0   0.0 ( 0 )
 Added by Xubo Ma
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Recently, three successful antineutrino experiments (Daya Bay, Double Chooz, and RENO) measured the neutrino mixing angle theta_13; however, significant discrepancies were found, both in the absolute flux and spectral shape. In this study, the antineutrino spectra were calculated by using the updated nuclear database, and we found that the four isotopes antineutrino spectrum have all contribution to the 5--7 MeV bump with ENDF/B-VII.1 fission yield. The bump can be explained well using the updated library and more important isotopes contribution to the bump were also given. In the last, the fission yield correlation coefficient between the four isotopes were discussed, and found that the correlation coefficients are very large.

rate research

Read More

The spectral shape of reactor antineutrinos measured in recent experiments shows anomalies in comparison to neutrino reference spectra. New precision measurements of the reactor neutrino spectra as well as more complete input in nuclear data bases are needed to resolve the observed discrepancies between models and experimental results. This article proposes the combination of experiments at reactors which are highly enriched in ${}^{235}$U with commercial reactors with typically lower enrichment to gain new insights into the origin of the anomalous neutrino spectrum. The presented method clarifies, if the spectral anomaly is either solely or not at all related to the predicted ${}^{235}$U spectrum. Considering the current improvements of the energy scale uncertainty of present-day experiments, a significance of three sigma and above can be reached. As an example, we discuss the option of a direct comparison of the measured shape in the currently running Double Chooz near detector and the upcoming Stereo experiment. A quantitative feasibility study emphasizes that a precise understanding of the energy scale systematics is a crucial prerequisite in recent and next generation experiments investigating the spectral anomaly.
176 - V. Sinev 2012
Positron spectrum from inverse beta decay reaction on proton was measured in 1988-1990 as a result of neutrino exploration experiment. The measured spectrum has the largest statistics and lowest energy threshold between other neutrino experiments made that time at nuclear reactors. On base of the positron spectrum the standard antineutrino spectrum for typical reactor fuel composition was restored. In presented analysis the partial spectra forming this standard spectrum were extracted using specific method. They could be used for neutrino experiments data analysis made at any fuel composition of reactor core.
Recently new reactor antineutrino spectra have been provided for 235U, 239Pu, 241Pu and 238U, increasing the mean flux by about 3 percent. To good approximation, this reevaluation applies to all reactor neutrino experiments. The synthesis of published experiments at reactor-detector distances <100 m leads to a ratio of observed event rate to predicted rate of 0.976(0.024). With our new flux evaluation, this ratio shifts to 0.943(0.023), leading to a deviation from unity at 98.6% C.L. which we call the reactor antineutrino anomaly. The compatibility of our results with the existence of a fourth non-standard neutrino state driving neutrino oscillations at short distances is discussed. The combined analysis of reactor data, gallium solar neutrino calibration experiments, and MiniBooNE-neutrino data disfavors the no-oscillation hypothesis at 99.8% C.L. The oscillation parameters are such that |Delta m_{new}^2|>1.5 eV^2 (95%) and sin^2(2theta_{new})=0.14(0.08) (95%). Constraints on the theta13 neutrino mixing angle are revised.
We propose to test for short baseline neutrino oscillations, implied by the recent reevaluation of the reactor antineutrino flux and by anomalous results from the gallium solar neutrino detectors. The test will consist of producing a 75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLANDs 13m diameter target volume provides a suitable environment to measure energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile state. Such a measurement will be free of any reactor-related uncertainties. After 1.5 years of data taking the Reactor Antineutrino Anomaly parameter space will be tested at > 95% C.L.
A new summation method model of the reactor antineutrino energy spectrum is presented. It is updated with the most recent evaluated decay databases and with our Total Absorption Gamma-ray Spectroscopy measurements performed during the last decade. For the first time the spectral measurements from the Daya Bay experiment are compared with the detected antineutrino energy spectrum computed with the updated summation method without any renormalisation. The results exhibit a better agreement than is obtained with the Huber-Mueller model in the 2 to 5 MeV range, the region which dominates the detected flux. An unexpected systematic trend is found that the detected antineutrino flux computed with the summation model decreases with the inclusion of more Pandemonium free data. The detected flux obtained now lies only 1.9% above that detected in the Daya Bay experiment, a value that may be reduced with forthcoming new Pandemonium free data leaving less and less room to the reactor anomaly. Eventually, the new predictions of individual antineutrino spectra for the $^{235}$U, $^{239}$Pu, $^{241}$Pu and $^{238}$U are used to compute the dependence of the reactor antineutrino spectral shape on the fission fractions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا