Do you want to publish a course? Click here

White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND

121   0   0.0 ( 0 )
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We propose to test for short baseline neutrino oscillations, implied by the recent reevaluation of the reactor antineutrino flux and by anomalous results from the gallium solar neutrino detectors. The test will consist of producing a 75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLANDs 13m diameter target volume provides a suitable environment to measure energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile state. Such a measurement will be free of any reactor-related uncertainties. After 1.5 years of data taking the Reactor Antineutrino Anomaly parameter space will be tested at > 95% C.L.



rate research

Read More

192 - A. Gando 2013
The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLANDs 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile neutrino state. This will provide a comprehensive test of the electron dissaperance neutrino anomalies and could lead to the discovery of a 4th neutrino state for Delta_m^2 > 0.1 eV^2 and sin^2(2theta) > 0.05.
Recently new reactor antineutrino spectra have been provided for 235U, 239Pu, 241Pu and 238U, increasing the mean flux by about 3 percent. To good approximation, this reevaluation applies to all reactor neutrino experiments. The synthesis of published experiments at reactor-detector distances <100 m leads to a ratio of observed event rate to predicted rate of 0.976(0.024). With our new flux evaluation, this ratio shifts to 0.943(0.023), leading to a deviation from unity at 98.6% C.L. which we call the reactor antineutrino anomaly. The compatibility of our results with the existence of a fourth non-standard neutrino state driving neutrino oscillations at short distances is discussed. The combined analysis of reactor data, gallium solar neutrino calibration experiments, and MiniBooNE-neutrino data disfavors the no-oscillation hypothesis at 99.8% C.L. The oscillation parameters are such that |Delta m_{new}^2|>1.5 eV^2 (95%) and sin^2(2theta_{new})=0.14(0.08) (95%). Constraints on the theta13 neutrino mixing angle are revised.
We have examined the impact of new Daya Bay, Double Chooz, and RENO measurements on global fits of reactor antineutrino flux data to a variety of hypotheses regarding the origin of the reactor antineutrino anomaly. In comparing RENO and Daya Bay measurements of inverse beta decay (IBD) yield versus $^{239}$Pu fission fraction, we find differing levels of precision in measurements of time-integrated yield and yield slope, but similar central values, leading to modestly enhanced isotopic IBD yield measurements in a joint fit of the two datasets. In the absence of sterile neutrino oscillations, global fits to all measurements now provide 3{sigma} preference for incorrect modeling of specific fission isotopes over common mis-modeling of all beta-converted isotopes. If sterile neutrino oscillations are considered, global IBD yield fits provide no substantial preference between oscillation-including and oscillation-excluding hypotheses: hybrid models containing both sterile neutrino oscillations and incorrect $^{235}$U or $^{239}$Pu flux predictions are favored at only 1-2{sigma} with respect to models where $^{235}$U, $^{238}$U, and $^{239}$Pu are assumed to be incorrectly predicted.
The spectral shape of reactor antineutrinos measured in recent experiments shows anomalies in comparison to neutrino reference spectra. New precision measurements of the reactor neutrino spectra as well as more complete input in nuclear data bases are needed to resolve the observed discrepancies between models and experimental results. This article proposes the combination of experiments at reactors which are highly enriched in ${}^{235}$U with commercial reactors with typically lower enrichment to gain new insights into the origin of the anomalous neutrino spectrum. The presented method clarifies, if the spectral anomaly is either solely or not at all related to the predicted ${}^{235}$U spectrum. Considering the current improvements of the energy scale uncertainty of present-day experiments, a significance of three sigma and above can be reached. As an example, we discuss the option of a direct comparison of the measured shape in the currently running Double Chooz near detector and the upcoming Stereo experiment. A quantitative feasibility study emphasizes that a precise understanding of the energy scale systematics is a crucial prerequisite in recent and next generation experiments investigating the spectral anomaly.
183 - Haoqi Lu 2014
Neutrinos are elementary particles in the standard model of particle physics. There are 3 flavors of neutrinos that oscillate among themselves. Their oscillation can be described by a 3$times$3 unitary matrix, containing three mixing angles $theta_{12}$, $theta_{23}$, $theta_{13}$, and one CP phase. Both $theta_{12}$ and $theta_{23}$ are known from previous experiments. $theta_{13}$ was unknown just two years ago. The Daya Bay experiment gave the first definitive non-zero value in 2012. An improved measurement of the oscillation amplitude $sin^{2}2(theta_{13})$ = $0.090^{+0.008}_{-0.009}$ and the first direct measurement of the $bar u_{e}$ mass-squared difference $mid$$Delta m^2_{ee}$$mid$ = $(2.59^{+0.19}_{-0.20})times10^{-3} rm eV^{2}$ were obtained recently. The large value of $theta_{13}$ boosts the next generation of reactor antineutrino experiments designed to determine the neutrino mass hierarchy, such as JUNO and RENO-50 .
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا