Do you want to publish a course? Click here

ASR-free CNN-DTW keyword spotting using multilingual bottleneck features for almost zero-resource languages

186   0   0.0 ( 0 )
 Added by Raghav Menon
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We consider multilingual bottleneck features (BNFs) for nearly zero-resource keyword spotting. This forms part of a United Nations effort using keyword spotting to support humanitarian relief programmes in parts of Africa where languages are severely under-resourced. We use 1920 isolated keywords (40 types, 34 minutes) as exemplars for dynamic time warping (DTW) template matching, which is performed on a much larger body of untranscribed speech. These DTW costs are used as targets for a convolutional neural network (CNN) keyword spotter, giving a much faster system than direct DTW. Here we consider how available data from well-resourced languages can improve this CNN-DTW approach. We show that multilingual BNFs trained on ten languages improve the area under the ROC curve of a CNN-DTW system by 10.9% absolute relative to the MFCC baseline. By combining low-resource DTW-based supervision with information from well-resourced languages, CNN-DTW is a competitive option for low-resource keyword spotting.



rate research

Read More

We use dynamic time warping (DTW) as supervision for training a convolutional neural network (CNN) based keyword spotting system using a small set of spoken isolated keywords. The aim is to allow rapid deployment of a keyword spotting system in a new language to support urgent United Nations (UN) relief programmes in parts of Africa where languages are extremely under-resourced and the development of annotated speech resources is infeasible. First, we use 1920 recorded keywords (40 keyword types, 34 minutes of speech) as exemplars in a DTW-based template matching system and apply it to untranscribed broadcast speech. Then, we use the resulting DTW scores as targets to train a CNN on the same unlabelled speech. In this way we use just 34 minutes of labelled speech, but leverage a large amount of unlabelled data for training. While the resulting CNN keyword spotter cannot match the performance of the DTW-based system, it substantially outperforms a CNN classifier trained only on the keywords, improving the area under the ROC curve from 0.54 to 0.64. Because our CNN system is several orders of magnitude faster at runtime than the DTW system, it represents the most viable keyword spotter on this extremely limited dataset.
We compare features for dynamic time warping (DTW) when used to bootstrap keyword spotting (KWS) in an almost zero-resource setting. Such quickly-deployable systems aim to support United Nations (UN) humanitarian relief efforts in parts of Africa with severely under-resourced languages. Our objective is to identify acoustic features that provide acceptable KWS performance in such environments. As supervised resource, we restrict ourselves to a small, easily acquired and independently compiled set of isolated keywords. For feature extraction, a multilingual bottleneck feature (BNF) extractor, trained on well-resourced out-of-domain languages, is integrated with a correspondence autoencoder (CAE) trained on extremely sparse in-domain data. On their own, BNFs and CAE features are shown to achieve a more than 2% absolute performance improvement over baseline MFCCs. However, by using BNFs as input to the CAE, even better performance is achieved, with a more than 11% absolute improvement in ROC AUC over MFCCs and more than twice as many top-10 retrievals for two evaluated languages, English and Luganda. We conclude that integrating BNFs with the CAE allows both large out-of-domain and sparse in-domain resources to be exploited for improved ASR-free keyword spotting.
We consider feature learning for efficient keyword spotting that can be applied in severely under-resourced settings. The objective is to support humanitarian relief programmes by the United Nations in parts of Africa in which almost no language resources are available. For rapid development in such languages, we rely on a small, easily-compiled set of isolated keywords. These keyword templates are applied to a large corpus of in-domain but untranscribed speech using dynamic time warping (DTW). The resulting DTW alignment scores are used to train a convolutional neural network (CNN) which is orders of magnitude more computationally efficient and suitable for real-time application. We optimise this neural network keyword spotter by identifying robust acoustic features in this almost zero-resource setting. First, we incorporate information from well-resourced but unrelated languages using a multilingual bottleneck feature (BNF) extractor. Next, we consider features extracted from an autoencoder (AE) trained on in-domain but untranscribed data. Finally, we consider correspondence autoencoder (CAE) features which are fine-tuned on the small set of in-domain labelled data. Experiments in South African English and Luganda, a low-resource language, show that BNF and CAE features achieve a 5% relative performance improvement over baseline MFCCs. However, using BNFs as input to the CAE results in a more than 27% relative improvement over MFCCs in ROC area-under-the-curve (AUC) and more than twice as many top-10 retrievals. We show that, using these features, the CNN-DTW keyword spotter performs almost as well as the DTW keyword spotter while outperforming a baseline CNN trained only on the keyword templates. The CNN-DTW keyword spotter using BNF-derived CAE features represents an efficient approach with competitive performance suited to rapid deployment in a severely under-resourced scenario.
Recently, there is increasing interest in multilingual automatic speech recognition (ASR) where a speech recognition system caters to multiple low resource languages by taking advantage of low amounts of labeled corpora in multiple languages. With multilingualism becoming common in todays world, there has been increasing interest in code-switching ASR as well. In code-switching, multiple languages are freely interchanged within a single sentence or between sentences. The success of low-resource multilingual and code-switching ASR often depends on the variety of languages in terms of their acoustics, linguistic characteristics as well as the amount of data available and how these are carefully considered in building the ASR system. In this challenge, we would like to focus on building multilingual and code-switching ASR systems through two different subtasks related to a total of seven Indian languages, namely Hindi, Marathi, Odia, Tamil, Telugu, Gujarati and Bengali. For this purpose, we provide a total of ~600 hours of transcribed speech data, comprising train and test sets, in these languages including two code-switched language pairs, Hindi-English and Bengali-English. We also provide a baseline recipe for both the tasks with a WER of 30.73% and 32.45% on the test sets of multilingual and code-switching subtasks, respectively.
In this work, we explore the benefits of using multilingual bottleneck features (mBNF) in acoustic modelling for the automatic speech recognition of code-switched (CS) speech in African languages. The unavailability of annotated corpora in the languages of interest has always been a primary challenge when developing speech recognition systems for this severely under-resourced type of speech. Hence, it is worthwhile to investigate the potential of using speech corpora available for other better-resourced languages to improve speech recognition performance. To achieve this, we train a mBNF extractor using nine Southern Bantu languages that form part of the freely available multilingual NCHLT corpus. We append these mBNFs to the existing MFCCs, pitch features and i-vectors to train acoustic models for automatic speech recognition (ASR) in the target code-switched languages. Our results show that the inclusion of the mBNF features leads to clear performance improvements over a baseline trained without the mBNFs for code-switched English-isiZulu, English-isiXhosa, English-Sesotho and English-Setswana speech.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا