No Arabic abstract
Electrical manipulation of magnetization is essential for integration of magnetic functionalities such as magnetic memories and magnetic logic devices into electronic circuits. The current induced spin-orbit torque (SOT) in heavy metal/ferromagnet (HM/FM) bilayers via the spin Hall effect in the HM and/or the Rashba effect at the interfaces provides an efficient way to switch the magnetization. In the meantime, current induced SOT has also been used to switch the in-plane magnetization in single layers such as ferromagnetic semiconductor (Ga,Mn)As and antiferromagnetic metal CuMnAs with globally or locally broken inversion symmetry. Here we demonstrate the current induced perpendicular magnetization switching in L10 FePt single layer. The current induced spin-orbit effective fields in L10 FePt increase with the chemical ordering parameter (S). In 20 nm FePt films with high S, we observe a large charge-to-spin conversion efficiency and a switching current density as low as 7.0E6 A/cm2. We anticipate our findings may stimulate the exploration of the spin-orbit torques in bulk perpendicular magnetic anisotropic materials and the application of high-efficient perpendicular magnetization switching in single FM layer.
We report spin-orbit torques (SOT) in L10-ordered perpendicularly magnetized FePt single layer, which is significantly influenced by disorder. Recently, self-induced SOT in L10-FePt single layer has been investigated, which is ascribed to the composition gradient along the film normal direction. However, the determined mechanisms for magnetization switching have not been fully studied. With varying growth temperatures, we have prepared FePt single layers with same thickness (3 nm) but with different disordering. We have found that nearly full magnetization switching only happens in more disordered films, and the magnetization switching ratio becomes smaller as increasing L10 ordering. The method for deriving effective spin torque fields in the previous studies cannot fully explain the spin current generation and self-induced SOT in L10-FePt single layer. Combined with Magneto-Optical Kerr Effect microscopy and anomalous Hall effect measurements, we concluded that the disorder should determine the formation of domain walls, as well as the spin current generation.
Flexible control of magnetization switching by electrical manners is crucial for applications of spin-orbitronics. Besides of a switching current that is parallel to an applied field, a bias current that is normal to the switching current is introduced to tune the magnitude of effective damping-like and field-like torques and further to electrically control magnetization switching. Symmetrical and asymmetrical control over the critical switching current by the bias current with opposite polarities is both realized in Pt/Co/MgO and $alpha$-Ta/CoFeB/MgO systems, respectively. This research not only identifies the influences of field-like and damping-like torques on switching process but also demonstrates an electrical method to control it.
We demonstrate spin-orbit torque (SOT) switching of amorphous CoTb single layer films with perpendicular magnetic anisotropy (PMA). The switching sustains even the film thickness is above 10 nm, where the critical switching current density keeps almost constant. Without the need of overcoming the strong interfacial Dzyaloshinskii-Moriya interaction caused by the heavy metal, a quite low assistant field of ~20 Oe is sufficient to realize the fully switching. The SOT effective field decreases and undergoes a sign change with the decrease of the Tb-concentration, implying that a combination of the spin Hall effect from both Co and Tb as well as an asymmetric spin current absorption accounts for the SOT switching mechanism. Our findings would advance the use of magnetic materials with bulk PMA for energy-efficient and thermal-stable non-volatile memories, and add a different dimension for understanding the ordering and asymmetry in amorphous thin films.
We report the first demonstration of the current-induced magnetization switching in a perpendicularly magnetized A1 CoPt single layer. We show that good perpendicular magnetic anisotropy can be obtained in a wide composition range of the A1 Co1-xPtx single layers, which allows to fabricate perpendicularly magnetized CoPt single layer with composition gradient to break the inversion symmetry of the structure. By fabricating the gradient CoPt single layer, we have evaluated the SOT efficiency and successfully realized the SOT-induced magnetization switching. Our study provides an approach to realize the current-induced magnetization in the ferromagnetic single layers without attaching SOT source materials.
A model for single-domain uniaxial ferromagnetic particles with high anisotropy, the Ising model, is studied. Recent experimental observations have been made of the probability that the magnetization has not switched. Here an approach is described in which it is emphasized that a ferromagnetic particle in an unfavorable field is in fact a metastable system, and the switching is accomplished through the nucleation and subsequent growth of localized droplets. Nucleation theory is applied to finite systems to determine the coercivity as a function of particle size and to calculate the probability of not switching. Both of these quantities are modified by different boundary conditions, magnetostatic interactions, and quenched disorder.