Do you want to publish a course? Click here

Finite-energy Levy-type motion through heterogeneous ensemble of Brownian particles

184   0   0.0 ( 0 )
 Added by Gianni Pagnini
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Complex systems display anomalous diffusion, whose signature is a space/time scaling $xsim t^delta$ with $delta e 1/2$ in the Probability Density Function (PDF). Anomalous diffusion can emerge jointly with both Gaussian, e.g., fractional Brownian motion, and power-law decaying distributions, e.g., Levy Flights (LFs) or Levy Walks (LWs). LFs get anomalous scaling, but also infinite position variance and also infinite energy and discontinuous velocity. LWs are based on random trapping events, resemble a Levy-type power-law distribution that is truncated in the large displacement range and have finite moments, finite energy and discontinuous velocity. However, both LFs and LWs cannot describe friction-diffusion processes. We propose and discuss a model describing a Heterogeneous Ensemble of Brownian Particles (HEBP) based on a linear Langevin equation. We show that, for proper distributions of relaxation time and velocity diffusivity, the HEBP displays features similar to LWs, in particular power-law decaying PDF, long-range correlations and anomalous diffusion, at the same time keeping finite position moments and finite energy. The main differences between the HEBP model and two LWs are investigated, finding that, even if the PDFs are similar, they differ in three main aspects: (i) LWs are biscaling, while HEBP is monoscaling; (ii) a transition from anomalous ($delta e 1/2$) to normal ($delta = 1/2$) diffusion in the long-time regime; (iii) the power-law index of the position PDF and the space/time diffusion scaling are independent in the HEBP, while they both depend on the scaling of the inter-event time PDF in LWs. The HEBP model is derived from a friction-diffusion process, it has finite energy and it satisfies the fluctuation-dissipation theorem.



rate research

Read More

We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Levy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first passage time distribution) is elucidated together with a discussion of the proper setup of corresponding boundary conditions that correctly yield the statistics of first passages for these non-Gaussian noises. The validity of the method is tested numerically and compared against analytical formulae when the stability index $alpha$ approaches 2, recovering in this limit the standard results for the Fokker-Planck dynamics driven by Gaussian white noise.
We study the dynamics of the N-particle system evolving in the XY hamiltonian mean field (HMF) model for a repulsive potential, when no phase transition occurs. Starting from a homogeneous distribution, particles evolve in a mean field created by the interaction with all others. This interaction does not change the homogeneous state of the system, and particle motion is approximately ballistic with small corrections. For initial particle data approaching a waterbag, it is explicitly proved that corrections to the ballistic velocities are in the form of independent brownian noises over a time scale diverging not slower than $N^{2/5}$ as $N to infty$, which proves the propagation of molecular chaos. Molecular dynamics simulations of the XY-HMF model confirm our analytical findings.
Fractional Brownian motion is a non-Markovian Gaussian process indexed by the Hurst exponent $Hin [0,1]$, generalising standard Brownian motion to account for anomalous diffusion. Functionals of this process are important for practical applications as a standard reference point for non-equilibrium dynamics. We describe a perturbation expansion allowing us to evaluate many non-trivial observables analytically: We generalize the celebrated three arcsine-laws of standard Brownian motion. The functionals are: (i) the fraction of time the process remains positive, (ii) the time when the process last visits the origin, and (iii) the time when it achieves its maximum (or minimum). We derive expressions for the probability of these three functionals as an expansion in $epsilon = H-tfrac{1}{2}$, up to second order. We find that the three probabilities are different, except for $H=tfrac{1}{2}$ where they coincide. Our results are confirmed to high precision by numerical simulations.
244 - Thomas Vojta , Zachary Miller , 2021
Diffusive transport in many complex systems features a crossover between anomalous diffusion at short times and normal diffusion at long times. This behavior can be mathematically modeled by cutting off (tempering) beyond a mesoscopic correlation time the power-law correlations between the increments of fractional Brownian motion. Here, we investigate such tempered fractional Brownian motion confined to a finite interval by reflecting walls. Specifically, we explore how the tempering of the long-time correlations affects the strong accumulation and depletion of particles near reflecting boundaries recently discovered for untempered fractional Brownian motion. We find that exponential tempering introduces a characteristic size for the accumulation and depletion zones but does not affect the functional form of the probability density close to the wall. In contrast, power-law tempering leads to more complex behavior that differs between the superdiffusive and subdiffusive cases.
156 - Ihor Lubashevsky 2012
The paper is devoted to the relationship between the continuous Markovian description of Levy flights developed previously and their equivalent representation in terms of discrete steps of a wandering particle, a certain generalization of continuous time random walks. Our consideration is confined to the one-dimensional model for continuous random motion of a particle with inertia. Its dynamics governed by stochastic self-acceleration is described as motion on the phase plane {x,v} comprising the position x and velocity v=dx/dt of the given particle. A notion of random walks inside a certain neighbourhood L of the line v=0 (the x-axis) and outside it is developed. It enables us to represent a continuous trajectory of particle motion on the plane {x,v} as a collection of the corresponding discrete steps. Each of these steps matches one complete fragment of the velocity fluctuations originating and terminating at the boundary of L. As demonstrated, the characteristic length of particle spatial displacement is mainly determined by velocity fluctuations with large amplitude, which endows the derived random walks along the x-axis with the characteristic properties of Levy flights. Using the developed classification of random trajectories a certain parameter-free core stochastic process is constructed. Its peculiarity is that all the characteristics of Levy flights similar to the exponent of the Levy scaling law are no more than the parameters of the corresponding transformation from the particle velocity v to the related variable of the core process. In this way the previously found validity of the continuous Markovian model for all the regimes of Levy flights is explained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا