No Arabic abstract
We consider a continuous random walk model for describing normal as well as anomalous diffusion of particles subjected to an external force when these particles diffuse in a uniformly expanding (or contracting) medium. A general equation that relates the probability distribution function (pdf) of finding a particle at a given position and time to the single-step jump length and waiting time pdfs is provided. The equation takes the form of a generalized Fokker-Planck equation when the jump length pdf of the particle has a finite variance. This generalized equation becomes a fractional Fokker-Planck equation in the case of a heavy-tailed waiting time pdf. These equations allow us to study the relationship between expansion, diffusion and external force. We establish the conditions under which the dominant contribution to transport stems from the diffusive transport rather than from the drift due to the medium expansion. We find that anomalous diffusion processes under a constant external force in an expanding medium described by means of our continuous random walk model are not Galilei invariant, violate the generalized Einstein relation, and lead to propagators that are qualitatively different from the ones found in a static medium. Our results are supported by numerical simulations.
Expanding media are typical in many different fields, e.g. in Biology and Cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties. Here, we focus on such effects when the diffusion process is described by the Continuous Time Random Walk (CTRW) model. For the case where the jump length and the waiting time probability density functions (pdfs) are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Levy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Greens function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. For a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This Big Crunch effect stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model. In the case of an exponential expansion, exact recurrence relations for the Laplace-transformed moments are obtained. Our results confirm the intuitive expectation that the medium expansion hinders the mixing of diffusive particles occupying separate regions. In the case of Levy flights, we quantify this effect by means of the so-called Levy horizon.
We introduce a heterogeneous continuous time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatio-temporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
We present a classical, mesoscopic derivation of the Fokker-Planck equation for diffusion in an expanding medium. To this end, we take a conveniently generalized Chapman-Kolmogorov equation as the starting point. We obtain an analytical expression for the Greens function (propagator) and investigate both analytically and numerically how this function and the associated moments behave. We also study first-passage properties in expanding hyperspherical geometries. We show that in all cases the behavior is determined to a great extent by the so-called Brownian conformal time $tau(t)$, which we define via the relation $dot tau=1/a^2$, where $a(t)$ is the expansion scale factor. If the medium expansion is driven by a power law [$a(t) propto t^gamma$ with $gamma>0$], we find interesting crossover effects in the mixing effectiveness of the diffusion process when the characteristic exponent $gamma$ is varied. Crossover effects are also found at the level of the survival probability and of the moments of the first passage-time distribution with two different regimes separated by the critical value $gamma=1/2$. The case of an exponential scale factor is analyzed separately both for expanding and contracting media. In the latter situation, a stationary probability distribution arises in the long time limit.
We investigate the effects of markovian resseting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power law probability density functions. We prove the existence of a non-equilibrium stationary state and finite mean first arrival time. However, the existence of an optimum reset rate is conditioned to a specific relationship between the exponents of both power law tails. We also investigate the search efficiency by finding the optimal random walk which minimizes the mean first arrival time in terms of the reset rate, the distance of the initial position to the target and the characteristic transport exponents.
Intermittent stochastic processes appear in a wide field, such as chemistry, biology, ecology, and computer science. This paper builds up the theory of intermittent continuous time random walk (CTRW) and L{e}vy walk, in which the particles are stochastically reset to a given position with a resetting rate $r$. The mean squared displacements of the CTRW and L{e}vy walks with stochastic resetting are calculated, uncovering that the stochastic resetting always makes the CTRW process localized and L{e}vy walk diffuse slower. The asymptotic behaviors of the probability density function of Levy walk with stochastic resetting are carefully analyzed under different scales of $x$, and a striking influence of stochastic resetting is observed.