Do you want to publish a course? Click here

Model Agnostic Saliency for Weakly Supervised Lesion Detection from Breast DCE-MRI

158   0   0.0 ( 0 )
 Added by Gabriel Maicas
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

There is a heated debate on how to interpret the decisions provided by deep learning models (DLM), where the main approaches rely on the visualization of salient regions to interpret the DLM classification process. However, these approaches generally fail to satisfy three conditions for the problem of lesion detection from medical images: 1) for images with lesions, all salient regions should represent lesions, 2) for images containing no lesions, no salient region should be produced,and 3) lesions are generally small with relatively smooth borders. We propose a new model-agnostic paradigm to interpret DLM classification decisions supported by a novel definition of saliency that incorporates the conditions above. Our model-agnostic 1-class saliency detector (MASD) is tested on weakly supervised breast lesion detection from DCE-MRI, achieving state-of-the-art detection accuracy when compared to current visualization methods.



rate research

Read More

Purpose: We propose a deep learning-based computer-aided detection (CADe) method to detect breast lesions in ultrafast DCE-MRI sequences. This method uses both the three-dimensional spatial information and temporal information obtained from the early-phase of the dynamic acquisition. Methods: The proposed CADe method, based on a modified 3D RetinaNet model, operates on ultrafast T1 weighted sequences, which are preprocessed for motion compensation, temporal normalization, and are cropped before passing into the model. The model is optimized to enable the detection of relatively small breast lesions in a screening setting, focusing on detection of lesions that are harder to differentiate from confounding structures inside the breast. Results: The method was developed based on a dataset consisting of 489 ultrafast MRI studies obtained from 462 patients containing a total of 572 lesions (365 malignant, 207 benign) and achieved a detection rate, sensitivity, and detection rate of benign lesions of 0.90 (0.876-0.934), 0.95 (0.934-0.980), and 0.81 (0.751-0.871) at 4 false positives per normal breast with 10-fold cross-testing, respectively. Conclusions: The deep learning architecture used for the proposed CADe application can efficiently detect benign and malignant lesions on ultrafast DCE-MRI. Furthermore, utilizing the less visible hard-to detect-lesions in training improves the learning process and, subsequently, detection of malignant breast lesions.
Salient object detection aims at detecting the most visually distinct objects and producing the corresponding masks. As the cost of pixel-level annotations is high, image tags are usually used as weak supervisions. However, an image tag can only be used to annotate one class of objects. In this paper, we introduce saliency subitizing as the weak supervision since it is class-agnostic. This allows the supervision to be aligned with the property of saliency detection, where the salient objects of an image could be from more than one class. To this end, we propose a model with two modules, Saliency Subitizing Module (SSM) and Saliency Updating Module (SUM). While SSM learns to generate the initial saliency masks using the subitizing information, without the need for any unsupervised methods or some random seeds, SUM helps iteratively refine the generated saliency masks. We conduct extensive experiments on five benchmark datasets. The experimental results show that our method outperforms other weakly-supervised methods and even performs comparably to some fully-supervised methods.
We propose a new method for breast cancer screening from DCE-MRI based on a post-hoc approach that is trained using weakly annotated data (i.e., labels are available only at the image level without any lesion delineation). Our proposed post-hoc method automatically diagnosis the whole volume and, for positive cases, it localizes the malignant lesions that led to such diagnosis. Conversely, traditional approaches follow a pre-hoc approach that initially localises suspicious areas that are subsequently classified to establish the breast malignancy -- this approach is trained using strongly annotated data (i.e., it needs a delineation and classification of all lesions in an image). Another goal of this paper is to establish the advantages and disadvantages of both approaches when applied to breast screening from DCE-MRI. Relying on experiments on a breast DCE-MRI dataset that contains scans of 117 patients, our results show that the post-hoc method is more accurate for diagnosing the whole volume per patient, achieving an AUC of 0.91, while the pre-hoc method achieves an AUC of 0.81. However, the performance for localising the malignant lesions remains challenging for the post-hoc method due to the weakly labelled dataset employed during training.
Accurate segmentation of breast lesions is a crucial step in evaluating the characteristics of tumors. However, this is a challenging task, since breast lesions have sophisticated shape, topological structure, and variation in the intensity distribution. In this paper, we evaluated the performance of three unsupervised algorithms for the task of breast Magnetic Resonance (MRI) lesion segmentation, namely, Gaussian Mixture Model clustering, K-means clustering and a marker-controlled Watershed transformation based method. All methods were applied on breast MRI slices following selection of regions of interest (ROIs) by an expert radiologist and evaluated on 106 subjects images, which include 59 malignant and 47 benign lesions. Segmentation accuracy was evaluated by comparing our results with ground truth masks, using the Dice similarity coefficient (DSC), Jaccard index (JI), Hausdorff distance and precision-recall metrics. The results indicate that the marker-controlled Watershed transformation outperformed all other algorithms investigated.
Weakly supervised object detection (WSOD), which is the problem of learning detectors using only image-level labels, has been attracting more and more interest. However, this problem is quite challenging due to the lack of location supervision. To address this issue, this paper integrates saliency into a deep architecture, in which the location in- formation is explored both explicitly and implicitly. Specifically, we select highly confident object pro- posals under the guidance of class-specific saliency maps. The location information, together with semantic and saliency information, of the selected proposals are then used to explicitly supervise the network by imposing two additional losses. Meanwhile, a saliency prediction sub-network is built in the architecture. The prediction results are used to implicitly guide the localization procedure. The entire network is trained end-to-end. Experiments on PASCAL VOC demonstrate that our approach outperforms all state-of-the-arts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا