No Arabic abstract
The Symmetries of Feynman Integrals method (SFI) associates a natural Lie group with any diagram, depending only on its topology. The group acts on parameter space and the method determines the integrals dependence within group orbits. This paper analyzes the two-loop vacuum diagram. It is shown how the solution of the SFI equations practically reproduces the most general value of the integral. On the way certain novel derivations are found, a geometrical interpretation is described, and divergences in general dimension are analyzed. These would hopefully be useful for engaging with more involved diagrams.
The Symmetries of Feynman Integrals (SFI) is a method for evaluating Feynman Integrals which exposes a novel continuous group associated with the diagram which depends only on its topology and acts on its parameters. Using this method we study the kite diagram, a two-loop diagram with two external legs, with arbitrary masses and spacetime dimension. Generically, this method reduces a Feynman integral into a line integral over simpler diagrams. We identify a locus in parameter space where the integral further reduces to a mere linear combination of simpler diagrams, thereby maximally generalizing the known massless case.
We study the most general triangle diagram through the Symmetries of Feynman Integrals (SFI) approach. The SFI equation system is obtained and presented in a simple basis. The system is solved providing a novel derivation of an essentially known expression. We stress a description of the underlying geometry in terms of the Distance Geometry of a tetrahedron discussed by Davydychev-Delbourgo [1], a tetrahedron which is the dual on-shell diagram. In addition, the singular locus is identified and the diagrams value on the locuss two components is expressed as a linear combination of descendant bubble diagrams. The massless triangle and the associated magic connection are revisited.
The Symmetries of Feynman Integrals (SFI) method is extended for the first time to incorporate an irreducible numerator. This is done in the context of the so-called vacuum and propagator seagull diagrams, which have 3 and 2 loops, respectively, and both have a single irreducible numerator. For this purpose, an extended version of SFI (xSFI) is developed. For the seagull diagrams with general masses, the SFI equation system is found to extend by two additional equations. The first is a recursion equation in the numerator power, which has an alternative form as a differential equation for the generating function. The second equation applies only to the propagator seagull and does not involve the numerator. We solve the equation system in two cases: over the singular locus and in a certain 3 scale sector where we obtain novel closed-form evaluations and epsilon expansions, thereby extending previous results for the numerator-free case.
We study cluster algebras for some all-loop Feynman integrals, including box-ladder, penta-box-ladder, and (seven-point) double-penta-ladder integrals. In addition to the well-known box ladder whose symbol alphabet is $D_2simeq A_1^2$, we show that penta-box ladder has an alphabet of $D_3simeq A_3$ and provide strong evidence that the alphabet of double-penta ladder can be identified with a $D_4$ cluster algebra. We relate the symbol letters to the ${bf u}$ variables of cluster configuration space, which provide a gauge-invariant description of the cluster algebra, and we find various sub-algebras associated with limits of the integrals. We comment on constraints similar to extended-Steinmann relations or cluster adjacency conditions on cluster function spaces. Our study of the symbol and alphabet is based on the recently proposed Wilson-loop ${rm d}log$ representation, which allows us to predict higher-loop alphabet recursively; by applying such recursions to six-dimensional hexagon integrals, we also find $D_5$ and $D_6$ cluster functions for the two-mass-easy and three-mass-easy case, respectively.
In this manuscript, which is to appear in the proceedings of the conference MathemAmplitude 2019 in Padova, Italy, we provide an overview of the module intersection method for the the integration-by-parts (IBP) reduction of multi-loop Feynman integrals. The module intersection method, based on computational algebraic geometry, is a highly efficient way of getting IBP relations without double propagator or with a bound on the highest propagator degree. In this manner, trimmed IBP systems which are much shorter than the traditional ones can be obtained. We apply the modern, Petri net based, workflow management system GPI-Space in combination with the computer algebra system Singular to solve the trimmed IBP system via interpolation and efficient parallelization. We show, in particular, how to use the new plugin feature of GPI-Space to manage a global state of the computation and to efficiently handle mutable data. Moreover, a Mathematica interface to generate IBPs with restricted propagator degree, which is based on module intersection, is presented in this review.