Do you want to publish a course? Click here

Hi-5: a potential high-contrast thermal near-infrared imager for the VLTI

81   0   0.0 ( 0 )
 Added by Denis Defr\\`ere
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hi-5 is a high-contrast (or high dynamic range) infrared imager project for the VLTI. Its main goal is to characterize young extra-solar planetary systems and exozodiacal dust around southern main-sequence stars. In this paper, we present an update of the project and key technology pathways to improve the contrast achieved by the VLTI. In particular, we discuss the possibility to use integrated optics, proven in the near-infrared, in the thermal near-infrared (L and M bands, 3-5~$mu$m) and advanced fringe tracking strategies. We also address the strong exoplanet science case (young exoplanets, planet formation, and exozodiacal disks) offered by this wavelength regime as well as other possible science cases such as stellar physics (fundamental parameters and multiplicity) and extragalactic astrophysics (active galactic nuclei and fundamental constants). Synergies and scientific preparation for other potential future instruments such as the Planet Formation Imager are also briefly discussed.



rate research

Read More

The development of high-contrast capabilities has long been recognized as one of the top priorities for the VLTI. As of today, the VLTI routinely achieves contrasts of a few 10$^{-3}$ in the near-infrared with PIONIER (H band) and GRAVITY (K band). Nulling interferometers in the northern hemisphere and non-redundant aperture masking experiments have, however, demonstrated that contrasts of at least a few 10$^{-4}$ are within reach using specific beam combination and data acquisition techniques. In this paper, we explore the possibility to reach similar or higher contrasts on the VLTI. After reviewing the state-of-the-art in high-contrast infrared interferometry, we discuss key features that made the success of other high-contrast interferometric instruments (e.g., integrated optics, nulling, closure phase, and statistical data reduction) and address possible avenues to improve the contrast of the VLTI by at least one order of magnitude. In particular, we discuss the possibility to use integrated optics, proven in the near-infrared, in the thermal near-infrared (L and M bands, 3-5 $mu$m), a sweet spot to image and characterize young extra-solar planetary systems. Finally, we address the science cases of a high-contrast VLTI imaging instrument and focus particularly on exoplanet science (young exoplanets, planet formation, and exozodiacal disks), stellar physics (fundamental parameters and multiplicity), and extragalactic astrophysics (active galactic nuclei and fundamental constants). Synergies and scientific preparation for other potential future instruments such as the Planet Formation Imager are also briefly discussed.
ERIS is a diffraction limited thermal infrared imager and spectrograph for the Very Large Telescope UT4. One of the science cases for ERIS is the detection and characterization of circumstellar structures and exoplanets around bright stars that are typically much fainter than the stellar diffraction halo. Enhanced sensitivity is provided through the combination of (i) suppression of the diffraction halo of the target star using coronagraphs, and (ii) removal of any residual diffraction structure through focal plane wavefront sensing and subsequent active correction. In this paper we present the two coronagraphs used for diffraction suppression and enabling high contrast imaging in ERIS.
Cloud imaging using ground-based whole sky imagers is essential for a fine-grained understanding of the effects of cloud formations, which can be useful in many applications. Some such imagers are available commercially, but their cost is relatively high, and their flexibility is limited. Therefore, we built a new daytime Whole Sky Imager (WSI) called Wide Angle High-Resolution Sky Imaging System. The strengths of our new design are its simplicity, low manufacturing cost and high resolution. Our imager captures the entire hemisphere in a single high-resolution picture via a digital camera using a fish-eye lens. The camera was modified to capture light across the visible as well as the near-infrared spectral ranges. This paper describes the design of the device as well as the geometric and radiometric calibration of the imaging system.
Segmented telescopes are a possibility to enable large-aperture space telescopes for the direct imaging and spectroscopy of habitable worlds. However, the complexity of their aperture geometry, due to the central obstruction, support structures and segment gaps, makes high-contrast imaging challenging. The High-contrast Imager for Complex Aperture Telescopes (HiCAT) testbed was designed to study and develop solutions for such telescope pupils using wavefront control and coronagraphic starlight suppression. The testbed design has the flexibility to enable studies with increasing complexity for telescope aperture geometries: off-axis telescopes, on-axis telescopes with central obstruction and support structures - e.g. the Wide Field Infrared Survey Telescope (WFIRST) - to on-axis segmented telescopes, including various concepts for a Large UV, Optical, IR telescope (LUVOIR). In the past year, HiCAT has made significant hardware and software updates to accelerate the development of the project. In addition to completely overhauling the software that runs the testbed, we have completed several hardware upgrades, including the second and third deformable mirror, and the first custom Apodized Pupil Lyot Coronagraph (APLC) optimized for the HiCAT aperture, which is similar to one of the possible geometries considered for LUVOIR. The testbed also includes several external metrology features for rapid replacement of parts, and in particular the ability to test multiple apodizers readily, an active tip-tilt control system to compensate for local vibration and air turbulence in the enclosure. On the software and operations side, the software infrastructure enables 24/7 automated experiments that include routine calibration tasks and high-contrast experiments. We present an overview and status update of the project, on the hardware and software side, and describe results obtained with APLC WFC.
The mission EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), selected by NASA for technology development, is designed to study the formation, evolution and architectures of exoplanetary systems and characterize circumstellar environments into stellar habitable zones. It is composed of a 0.7 m telescope equipped with a Phase-Induced Amplitude Apodization Coronagraph (PIAA-C) and a 2000-element MEMS deformable mirror, capable of raw contrasts of 1e-6 at 1.2 lambda/D and 1e-7 above 2 lambda/D. One of the key challenges to achieve those contrasts is to remove low-order aberrations, using a Low-Order WaveFront Sensor (LOWFS). An experiment simulating the starlight suppression system is currently developed at NASA Ames Research Center, and includes a LOWFS controlling tip/tilt modes in real time at 500 Hz. The LOWFS allowed us to reduce the tip/tilt disturbances to 1e-3 lambda/D rms, enhancing the previous contrast by a decade, to 8e-7 between 1.2 and 2 lambda/D. A Linear Quadratic Gaussian (LQG) controller is currently implemented to improve even more that result by reducing residual vibrations. This testbed shows that a good knowledge of the low-order disturbances is a key asset for high contrast imaging, whether for real-time control or for post processing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا