No Arabic abstract
We propose a generalization of the Feynman path integral using squeezed coherent states. We apply this approach to the dynamics of Bose-Einstein condensates, which gives an effective low energy description that contains both a coherent field and a squeezing field. We derive the classical trajectory of this action, which constitutes a generalization of the Gross Pitaevskii equation, at linear order. We derive the low energy excitations, which provides a description of second sound in weakly interacting condensates as a squeezing oscillation of the order parameter. This interpretation is also supported by a comparison to a numerical c-field method.
While the Gross--Pitaevskii equation is well-established as the canonical dynamical description of atomic Bose-Einstein condensates (BECs) at zero-temperature, describing the dynamics of BECs at finite temperatures remains a difficult theoretical problem, particularly when considering low-temperature, non-equilibrium systems in which depletion of the condensate occurs dynamically as a result of external driving. In this paper, we describe a fully time-dependent numerical implementation of a second-order, number-conserving description of finite-temperature BEC dynamics. This description consists of equations of motion describing the coupled dynamics of the condensate and non-condensate fractions in a self-consistent manner, and is ideally suited for the study of low-temperature, non-equilibrium, driven systems. The delta-kicked-rotor BEC provides a prototypical example of such a system, and we demonstrate the efficacy of our numerical implementation by investigating its dynamics at finite temperature. We demonstrate that the qualitative features of the system dynamics at zero temperature are generally preserved at finite temperatures, and predict a quantitative finite-temperature shift of resonance frequencies which would be relevant for, and could be verified by, future experiments.
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we clarify the extent of how classical a BEC is by exploring the semiclassical equations for BECs under the mean field Gaussian approximation. Such equations describe the dynamics of a condensate in the classical limit in terms of the variables < x > and < p > as well as their respective variances. We compare the semiclassical solution with the full quantum solution based on the Gross-Pitaevskii Equation (GPE) and find that the interatomic interactions which generate nonlinearity make the system less classical. On the other hand, many qualitative features are captured by the semiclassical equations, and the equations to be solved are far less computationally intensive than solving the GPE which make them ideal for providing quick diagnostics, and for obtaining new intuitive insight.
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, therefore provides direct access to the degree of condensation and still recovers quantum correlations in an exact manner. We eventually initiate and establish this novel theory by deriving the respective universal functional $mathcal{F}$ for general homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most importantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory and a solution of the common phase dilemma of functional theories. We then illustrate this novel approach in several bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form of $mathcal{F}$ reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and more fundamental explanation for quantum depletion.
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven optical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.
We investigate the occurrence of rotons in a quadrupolar Bose-Einstein condensate confined to two dimensions. Depending on the particle density, the ratio of the contact and quadrupole-quadrupole interactions, and the alignment of the quadrupole moments with respect to the confinement plane, the dispersion relation features two or four point-like roton minima, or one ring-shaped minimum. We map out the entire parameter space of the roton behavior and identify the instability regions. We propose to observe the exotic rotons by monitoring the characteristic density wave dynamics resulting from a short local perturbation, and discuss the possibilities to detect the predicted effects in state-of-the-art experiments with ultracold homonuclear molecules.