Do you want to publish a course? Click here

Hybrid-Monte-Carlo study of competing order in the extended fermionic Hubbard model on the hexagonal lattice

101   0   0.0 ( 0 )
 Added by Dominik Smith
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using first-principle Hybrid-Monte-Carlo (HMC) simulations, we carry out an unbiased study of the competition between spin-density wave (SDW) and charge-density wave (CDW) order in the extended Hubbard model on the two dimensional hexagonal lattice at half filling. We determine the phase diagram in the space of on-site and nearest-neighbor couplings $U$ and $V$ in the region $V<U/3$, which can be simulated without a fermion sign problem, and find that a transition from semimetal to a SDW phase occurs at sufficiently large $U$ for basically all $V$. Tracing the corresponding phase boundary from $V=0$ to the $V=U/3$ line, we find evidence for critical scaling in the Gross-Neveu universality class for the entire boundary. With rather high confidence we rule out the existence of the CDW ordered phase anywhere in the range of parameters considered. We also discuss several improvements of the HMC algorithm which are crucial to reach these conclusions, in particular the improved fermion action with exact sublattice symmetry and the complexification of the Hubbard-Stratonovich field to ensure the ergodicity of the algorithm.



rate research

Read More

We present different methods to increase the performance of Hybrid Monte Carlo simulations of the Hubbard model in two-dimensions. Our simulations concentrate on a hexagonal lattice, though can be easily generalized to other lattices. It is found that best results can be achieved using a flexible GMRES solver for matrix
We study the phase diagram of the fermionic Hubbard model on the hexagonal lattice in the space of on-site and nearest neighbor couplings with Hybrid-Monte-Carlo simulations. With pure on-site repulsion this allows to determine the critical coupling strength for spin-density wave formation with the standard approach of introducing a small mass term, explicitly breaking the sublattice symmetry. The analogous mass term for charge-density wave formation above a critical nearest-neighbor repulsion, on the other hand, would introduce a fermion sign problem. The competition between the two and the phase diagram in the space of the two coouplings can however be studied in simulations without explicit sublattice symmetry breaking. Our results compare qualitatively well with the Hartree-Fock phase diagram. We furthermore demonstrate how spin-symmetry breaking by the Euclidean time discretization can be avoided also, when using an improved fermion action based on an exponetial transfer matrix with exact sublattice symmetry.
The interplay between lattice gauge theories and fermionic matter accounts for fundamental physical phenomena ranging from the deconfinement of quarks in particle physics to quantum spin liquid with fractionalized anyons and emergent gauge structures in condensed matter physics. However, except for certain limits (for instance large number of flavors of matter fields), analytical methods can provide few concrete results. Here we show that the problem of compact $U(1)$ lattice gauge theory coupled to fermionic matter in $(2+1)$D is possible to access via sign-problem-free quantum Monte Carlo simulations. One can hence map out the phase diagram as a function of fermion flavors and the strength of gauge fluctuations. By increasing the coupling constant of the gauge field, gauge confinement in the form of various spontaneous symmetry breaking phases such as valence bond solid (VBS) and Neel antiferromagnet emerge. Deconfined phases with algebraic spin and VBS correlation functions are also observed. Such deconfined phases are an incarnation of exotic states of matter, $i.e.$ the algebraic spin liquid, which is generally viewed as the parent state of various quantum phases. The phase transitions between deconfined and confined phases, as well as that between the different confined phases provide various manifestations of deconfined quantum criticality. In particular, for four flavors, $N_f = 4$, our data suggests a continuous quantum phase transition between the VBS and N{e}el order. We also provide preliminary theoretical analysis for these quantum phase transitions.
202 - Jinhua Sun , Donghui Xu , Yi Zhou 2014
Layered antiferromagnetic spin density wave (LAF) state is one of the plausible ground states of charge neutral Bernal stacked bilayer graphene. In this paper, we use determinant quantum Monte Carlo method to study the effect of the electric field on the magnetic order in bilayer Hubbard model on a honeycomb lattice. Our results qualitatively support the LAF ground state found in the mean field theory. The obtained magnetic moments, however, are much smaller than what are estimated in the mean field theory. As electric field increases, the magnetic order parameter rapidly decreases.
We present a method for direct hybrid Monte Carlo simulation of graphene on the hexagonal lattice. We compare the results of the simulation with exact results for a unit hexagonal cell system, where the Hamiltonian can be solved analytically.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا